Боеприпасы с кумулятивным зарядом. история развития эффекта берескова

Содержание

Бронебойный подкалиберный снаряд и его описание

Как мы уже отметили выше, подобные боеприпасы идеально подходят для стрельбы по танкам. Интересно то, что подкалибер не имеет привычного нам взрывателя и взрывчатого вещества. Принцип действия снаряда полностью основан на его кинетической энергии. Если сравнить, то это что-то похожее на массивную высокоскоростную пулю.

Состоит подкалибер из катушечного корпуса. В него вставляется сердечник, который зачастую выполняют в 3 раза меньшего размера, нежели калибр орудия. В качестве материала для сердечника используются металлокерамические сплавы высокой прочности. Если раньше это был вольфрам, то сегодня более популярен обедненный уран по целому ряду причин. Во время выстрела всю нагрузку воспринимает на себя поддон, тем самым обеспечивая начальную скорость полета. Так как вес такого снаряда меньше, нежели обычного бронебойного, за счет уменьшения калибра удалось добиться увеличения скорости полета. Речь идет о существенных значениях. Так, оперенный подкалиберный снаряд летит со скоростью 1 600 м/с, в то время как классический бронепробивающий – 800-1 000 м/с.

Кумулятивный эффект

На картинке — наглядная иллюстрация кумулятивного эффекта, или эффекта Манро: падающая в воду капля пробивает углубление в поверхности, которое затем «схлопывается», выбрасывая вверх струйку воды. Когда дети играют и бьют по воде ладонью, чтобы обрызгать друг друга, они тоже создают кумулятивные струи. Термин «кумуляция» происходит от латинского cumulatio — «скопление» или cumulo — «накапливаю» и означает увеличение или усиление какого-либо эффекта за счет сложения или накопления однородных с ним эффектов. В физике этот термин характеризует кратковременные процессы (как правило, это взрывы) и подразумевает усиление их в определенном месте или в направлении действия.

Представьте себе заряд взрывчатого вещества, находящийся в однородной, плотной среде — допустим, в жидкости. В какой-то момент происходит его взрыв, то есть чрезвычайно быстрое выделение запасенной веществом энергии. Продукты взрыва имеют очень высокую температуру, большую плотность и находятся под огромным давлением, они резко сжимают окружающую среду, создавая скачок уплотнения. Этот скачок распространяется по среде со сверхзвуковой скоростью, образуя так называемую «взрывную волну». Если заряд взорвался в небольшой области (точечный взрыв), то волна имеет сферическую форму. Частицы, которым она передает энергию, приобретают скорости, направленные от центра взрыва, и модули этих скоростей для равноудаленных частиц одинаковы. Следовательно, и плотность кинетической энергии во всех направлениях от центра одинакова.

Теперь представьте, что тем или иным способом нам удалось перераспределить энергию взрыва в пространстве, сделав так, чтобы плотность кинетической энергии в одном направлении была значительно больше, чем в остальных. Таким образом, скорость частиц в этом направлении возрастет, и возникнет струя. Именно этот эффект концентрации энергии в одном направлении и называется кумулятивным, а возникающая при этом струя — кумулятивной струей. Конечно, кумулятивные струи могут возникать не только при взрывах

Важно создать такие условия, когда плотность кинетической энергии движущейся среды быстро возрастает в небольшом объеме. И если этот объем не сферически-симметричен, то возникнет струя

Схема кумулятивного эффекта. Изображение с сайта ru.wikipedia.org

Исследователи взрывчатых веществ выяснили, что если в снаряде сделать полое углубление, то разрушительную энергию можно сконцентрировать на небольшом участке. В 1792 году горный инженер Франц фон Баадер провел подобные эксперименты с использованием дымного пороха, однако по-настоящему успешными эти эксперименты стали с появлением высокобризантных веществ. Уже в XIX веке кумулятивный эффект повторно исследовал и подробно описал в своих работах американец Чарльз Манро (Charles Edward Munro). В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности снаряда, в котором сделано конусное углубление, облицованное металлической воронкой. Эти перспективные разработки не замедлили получить применение у военных — в минно-взрывном деле и в артиллерии. Кумулятивные боеприпасы впервые использовали в боевых условиях 10 мая 1940 года при штурме форта Эбен-Эмаль (Бельгия).

С началом Великой Отечественной войны советские танкисты встретились с кумулятивным оружием немецкой армии — гранатами и снарядами. Поражая бронированные машины, такие снаряды оставляли характерные оплавленные отверстия и были названы «бронепрожигающими». Весной 1942 года на Софринском полигоне испытали снаряд, разработанный на основе немецкого трофея, и затем первый кумулятивный снаряд был принят на вооружение советской армии. В 1949 году советский математик и механик Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

На чем основано столь мощное действие кумулятивных зарядов? За счет углубления в виде воронки, которая при взрыве «схлопывается», как пробитая каплей поверхность воды, создается газовая струя из продуктов взрыва. Если воронка покрыта металлической облицовкой, струя получается из расплавленного металла высокой температуры. Поражение достигается действием струи небольшого диаметра на участок порядка 80 мм (см. видео). При опредленном расстоянии до цели эта струя имеет мощнейшее бронебойное действие, благодаря которому кумулятивный эффект и получил свою печальную известность.

Демонстрация кумулятивного эффекта на примере разных типов снарядов

Фото с сайта popmech.ru.

Андрей Алубаев

Вахтовые автобусы на шасси «Садко»

ГАЗ-33081-1091 и автомобиль технической поддержки ГАЗ-33086 «Земляк»

Автоцистерна пожарная АЦ-3,0-40 на шасси ГАЗ-33086

  • КАвЗ-39766 — автобус-вездеход с использованием 19-местного кузова автобуса малого класса КАвЗ-3976. Модификации: 397660 — с карбюраторным двигателем ЗМЗ-513; 397663 — с дизелем ММЗ Д-245.7. Производился в 2003—2005 гг.
  • СемАР-3257 — грузопассажирский 12-местный автобус-вездеход с карбюраторным двигателем ЗМЗ-513 и кузовом от автобуса малого класса СемАР-3280. Производился ЗАО НПП «Семар» в 2001—2006 гг.
  • ГАЗ-330811-10 «Вепрь» — автомобиль специального назначения на укороченной базе «Садко» с цельнометаллическим трёх- или пятидверным кузовом.

Фугасный снаряд. Принцип действия

Основная область применения боеприпасов фугасного действия — это разрушение строений и сооружений, укрытий и убежищ для живой силы. В полевых и боевых условиях – это, как правило, окопы и блиндажи, кирпичные и деревянные сооружения и строения. Артиллерийские фугасные снаряды чаще всего используются в качестве огневого инженерно-технического средства, используемого артиллерийскими системами крупного калибра. При попадании снаряда в цель, в результате подрыва взрывчатки, возникает фугасное действие на предметы. Мощность воздействия боеприпаса на предметы определяется фугасностью заряда. Фугасность характеризует способность взрывчатки за короткий временной период создать определенное количество продуктов взрыва, способных оказать разрушающее действие.

Ударная волна

Фугасное действие

Следует учитывать, что фугасность заряда может быть различной. Мера фугасности каждого боеприпаса зависит от потенциала взрывчатого вещества (ВВ) и удельной энергией, выделяемой им в момент взрыва. Работоспособность у взрывчатых веществ, используемых для начинки боеприпасов, может быть различной. На силу и мощность взрыва оказывают влияние удельный объем и состав газообразных продуктов в результате детонации ВВ. Точно определить фактическую работоспособность того или иного взрывчатого вещества достаточно трудно, поэтому фугасность определенного заряда ВВ принято выражать в относительных единицах. Как правило, фугасное действие взрывчатки сравнивается с результатом действия определенного количества тротила. Полученный в результате взрыва удельный объем продуктов измеряется в тротиловом эквиваленте.

Исходя из этих данных, можно сделать вывод. Могущество фугасного снаряда определяется количеством и типом взрывчатого вещества. Увеличение количества ВВ приводит к увеличению калибра боеприпаса. Более мощные взрывчатые вещества позволяют добиться необходимого поражающего эффекта, не увеличивая калибр снаряда. К примеру, для бронебойно-фугасных противотанковых снарядов главное — не калибр, а определенный поражающий эффект. За счет большой пробивной способности такие снаряды могут проникать глубоко в броню, после чего фугасный заряд приводит к ее дальнейшему разрушению.

Бронебойные снаряды

Пробивные качества патронов

В CZ-75 используют сразу три типа патронов: 9х19 Пара, 9х21 IMI и .40 S&W. Первоначально оружие создавали именно под патрон 9х19, так как он распространен по всему миру и включен в стандарты НАТО. Боеприпас отличается останавливающей способностью, скоростью полета пули и пробивной силой, позволяющей поражать цель с защитой низких классов. Позже, после развала СССР и выхода Чехии на западные рынки, к номенклатуре добавили два новых патрона .40 и 9х21. Это потребовалось для покрытия новых рынков сбыта, так как полиция США и Европы использует все три боеприпаса.

Кумулятивная струя

Фоторазвертка движения.

Условия формирования кумулятивной струи определяются микроструктурой металла облицовки и способностью его структурных составляющих к пластической деформации.

Фоторазвертка движения.

Путем улавливания кумулятивной струи в некоторых неплотных средах и последующего металлографического анализа установлено, что в процессе формирования струи не происходит плавления металла. Однако температура струи при этом может достигать 900 – 1000 С.

Процесс проникания кумулятивной струи в любую среду разделяется на начальную ударно-волновую стадию и стадию установившегося проникания.

Теория образования кумулятивных струй и их действия, предложенная М. А. Лаврентьевым и Г. И. Покровским ( около 1944 г.), просто и наглядно объясняет главные черты этого явления. Струя образуется при косом столкновении пластин, показанном на рис. 1, а. Авторы теории выбрали удачное и простое приближение, сделавшее все расчеты элементарными: материал пластин считается несжимаемой жидкостью. Во многих случаях такое приближение оказывается хорошим.

Механизм образования кумулятивной струи следующий. При взрыве вещества в виде цилиндрического заряда происходит почти мгновенное превращение его в газообразные продукты, которые разлетаются во все стороны в направлениях, перпендикулярных поверхности заряда. Если углубление в заряде облицовано тонким слоем металла, то при детонации заряда вдоль его оси образуется кумулятивная струя, состоящая не только из газообразных продуктов, но и из размягченного металла, который выделяется из металлической облицовки.

В создании кумулятивной струи участвует так называемая активная часть кумулятивного заряда, т.е. часть ВВ, непосредственно прилегающая к кумулятивной выемке и характеризующаяся распространением продуктов детонации в направлении кумулятивной струи. Продукты детонации остальной – пассивной части кумулятивного заряда разлетаются в стороны, полезной работы не производят и – как правило, оказывают вредное воздействие на окружающие элементы конструкции и среду. Доля активной части заряда может быть увеличена путем помещения заряда в массивную оболочку из плотного и прочного материала.

В этом случае кумулятивная струя не образуется. Следовательно, смачиваемость стенок пробирки жидкостью является существенным условием опыта.

Поскольку в действительности кумулятивная струя в движении растягивается и затем фрагментируется, расчет длины пробиваемого ею канала существенно усложняется.

Рассмотрим механизм образования кумулятивной струи и проникновении ее в преграду. При взрыве цилиндрического заряда взрывчатого вещества происходит почти мгновенное превращение его в газообразные продукты, разлетающиеся во все стороны по направлениям, перпендикулярным к поверхности заряда. Сущность эффекта кумуляции заключается в том, что при наличии выемки в заряде газообразные продукты детонации части заряда, называемой активной частью, двигаясь к оси заряда, концентрируются в мощный поток, называемый кумулятивной струей.

С – длина кумулятивной струи, для большинства зарядов численно равная длине образующей кумулятивной выемки.

Лаврентьев рассчитал параметры кумулятивной струи для зарядов с конической формой выемок и близкой к ней с учетом этих факторов.

Теория бронепробивного действия кумулятивной струи впервые была разработана Лаврентьевым. Он исходил из предположения, что при соударении струи с броней развиваются высокие давления, при которых можно пренебречь прочностным сопротивлением металла и рассматривать броню как идеальную несжимаемую жидкость. В соответствии с этим Лаврентьев подробно рассмотрел следующую задачу.

Рассмотрим сначала движение кумулятивной струи в воздухе. Очевидно, что на сравнительно небольших расстояниях от заряда ( до нескольких метров), которые и представляют практический интерес, сопротивлением воздуха можно пренебречь и рассматривать движение струи в вакууме.

Бомбардировочная «Игра престолов»

История этой машины полнится скандалами, интригами и даже заговорами. По одной из версий, именно с заговора и начался весь проект.

В 1960 году правительство СССР приняло судьбоносное решение о сворачивании работ над обычной авиацией в пользу ракет. По сей день о его пользе или вреде ломают копья историки, но появления будущего Т-4 иначе просто не случилось бы. Были закрыты все работы по межконтинентальным бомбардировщикам, прошёл черезгеноцид» лишь один проект — туполевский135».

Он представлял собой сверхзвуковой стратегический ракетоносец, в чьи задачи входила борьба с авианосцами США в относительно отдалённых акваториях вроде Индийского океана и Средиземного моря. Также он мог заниматься разведкой и ударами по наземным объектам в Европе. Дополнительные топливные баки позволяли достигать и межконтинентальной дальности.

Один из вариантов стратегического сверхзвукового бомбардировщика-ракетоносца135»

Как гласит одна из легенд, Хрущёв был бы рад закрыть и135», но Туполев имел слишком большой вес в промышленности и у военных. Тогда родился хитрый план — провести конкурс на ракетоносец, сделав всё, чтобы Туполев проиграл. В качестве оппонентов выбралиистребительные» КБ(конструкторские бюро) Сухого и Яковлева, ведь если бы один из них победил, можно было бы с лёгкостью закрыть проект, сославшись на недостаток опыта.

Существует и менее конспирологическая версия: решить задачу борьбы с авианосцами только ракетами на тот момент не имелось возможности, а после разгрома КБ Мясищева Туполев остался монополистом в этой отрасли — поэтому и привлекли конструкторов истребителей.

Стратегический сверхзвуковой бомбардировщик-ракетоносец Як-35. Реконструкция А. Жирнова

Как бы то ни было, к 1962 году все три КБ подготовили свои проекты. Самолёты Сухого и Яковлева по характеристикам походили друг на друга. Дальность в четыре тысячи километров с боевой нагрузкой, взлётная масса около 110 тонн, максимальная скорость в три тысячи километров в час — всё по требованиям заказчика. Разница была в размещении двигателей и форме крыла.

Вариант стратегического сверхзвукового бомбардировщика-ракетоносца Т-4/100», представленный в 1962 году. Реконструкция А. Жирнова

Туполевская машина серьёзно отличалась от конкурентов: была меньше скорость, всего 2500 километров в час. Это объяснялось тем, что бомбардировщик сделали не из стали с титаном, как другие проекты, а в основном из алюминия. Это снижало допустимую максимальную скорость, но упрощало и удешевляло проект: строить самолёты из стали с титаном было очень сложно и невообразимо дорого. Туполев считал, что разница в скорости в 500 километров в час в данном случае несущественна. Кроме того,135» весил под 190 тонн — исключительно из желания сэкономить. За счёт веса бомбардировщик имел запас топлива для межконтинентальных перелётов, а значит, был универсальнее своих конкурентов.

Финальный внешний вид бомбардировщика-ракетоносца Т-4

Где используется

Собственно сам кумулятивный эффект наблюдали, наверное, все без исключения люди. Возникает он, к примеру, при падении капли в воду. В этом случае на поверхности последней образуются воронка и тонкая струя, направленная вверх.

Использоваться кумулятивный эффект может, к примеру, в исследовательских целях. Создавая его искусственно, ученые ищут пути достижения высоких скоростей веществ — до 90 км/с. Также этот эффект используется в промышленности — в основном в горных разработках. Но наибольшее применение он, конечно же, нашел в военном деле. Боеприпасы, работающие на таком принципе, используются разными странами с начала прошлого века.

Эффективное использование

Кумулятивные снаряды могут использоваться любым видом войск, но их использование в некоторых случаях, не позволяет раскрыть полный потенциал выпущенного боеприпаса. Например, снаряды для нарезных пушек, способны быть стабильными в полёте. Но при этом возникающая при этом сила, не даёт выпустить кумулятивную струю.

Военные инженеры придумали способ обхода этой проблемы. Когда например в полёте, вращается только корпус боеприпаса, а кумулятивная часть устанавливаемая на подшипниках, остаётся полностью неподвижной. Но подобные решения неэффективны, т.к. усложняют процесс изготовления.

Снаряды, используемые гладкоствольными пушками, развивают слишком высокую скорость, которая не даёт фокусировано выпустить кумулятивную струю для уничтожения броневого листа указанной цели.

Наибольшая эффективность использования проявляется, когда кумулятивные заряды устанавливают на неподвижных и низкоскоростных боеприпасах, таких как мины.

Существует относительно простой способ защиты техники – рассеивание струи направленным взрывом. Специальный прибор, устанавливаемый на броневых листах (танка, БМП, БТРа) выпускает боевой заряд, который взрывается, когда струя подлетает на опасное расстояние. Это называется динамической защитой. Сейчас такая защита распространена на всей современной военной технике.

Но устанавливаемая динамическая защита не гарантирует полную защиту. Напротив, инженеры изобрели контрмеры – установление в снаряде особой боевой части. Она состоит из нескольких зарядов. Один из которых пробивает защиту, а другой пробивает защитный слой броневого листа цели.

Интересный факт! На данный момент, разработаны и успешно испытаны боеприпасы кумулятивного действия, с 2-3 зарядами.

Статья составлена с использованием следующих материалов:

Гальперин М.В. Общая экология. М.: ФОРУМ: ИНФРА-М, 2007. – 336 с

2.

Ганиев М.М., Недорезков В.Д. Химические средства защиты растений. – М.: КолосС, 2006. – 248 с.

3.

ГОСТ 21507-81 (СТ СЭВ 1740-79) Защита растений. Термины и определения. Москва: Государственный комитет СССР по стандартамм, 1981. — 54 с.

4.Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева — 3-е изд., перераб. и доп. — М.: Агропромиздат, 1987. — 415 с.: ил.
5.

Логвиновский В.Д., Негробов О.П. Пестициды. Современные проблемы природопользования. Воронеж, 2003, — 32 с

6.Попов С.Я. Основы химической защиты растений. Попов С.Я., Дорожкина Л.А., Калинин В.А./ Под ред. профессора С.Я Попова. — М.: Арт-Лион, 2003. — 208 с.
7.

Шкрабак В.С., Луковников А.В., Тургиев А.К. Безопасность жизнедеятельности в сельскохозяйственном производстве.- М.: Колос,2002

Свернуть
Список всех источников

История

Возникновение БОПС было связано с недостаточной бронепробиваемостью обычных бронебойных и подкалиберных снарядов для нарезных артиллерийских орудий в годы после Второй мировой войны . Попытки увеличить удельную нагрузку (то есть удлинить их сердечник) в подкалиберных снарядах натолкнулись на явление потери стабилизации вращением при увеличении длины снаряда свыше 6-8 калибров. Прочность современных материалов не позволяла более увеличивать угловую скорость вращения снарядов.

В 1944 году для пушки калибром 210 мм железнодорожной сверхдальнобойной установки К12(Е) немецкие конструкторы создали калиберный снаряд с раскрывающимся оперением. Длина снаряда составляла 1500 мм, масса 140 кг. При начальной скорости 1850 м/c снаряд должен был иметь дальность полета 250 км. Для стрельбы оперёнными снарядами был создан гладкий артиллерийский ствол длиной 31 м. Снаряд и пушка не вышли из стадии испытаний.

Самым известным проектом, использовавшим сверхдальнобойный подкалиберный оперённый снаряд, был проект главного инженера фирмы «Рехлинг» Кондерса. Орудие Кондерса имело несколько названий – Фау-3, «HDP-Насос высокого давления», «Многоножка», «Трудолюбивая Лизхен», «Приятель». Многокамерное орудие калибра 150 мм использовало стреловидный оперённый подкалиберный снаряд массой в разных вариантах от 80 кг до 127 кг, при заряде взрывчатого вещества от 5 кг до 25 кг. Калибр тела снаряда колебался от 90 мм до 110 мм. Разные варианты снарядов содержали от 4 откидных до 6 постоянных перьев стабилизаторов. Удлинение некоторых моделей снарядов достигало 36. Укороченная модификация пушки LRK 15F58 стреляла стреловидным снарядом 15-cm-Sprgr. 4481, спроектированным в Пенемюнде, и участвовала в боевых действиях, ведя огонь по Люксембургу , Антверпену и 3-й армии США. В конце войны одно орудие было захвачено американцами и вывезено в США.

Оперённые снаряды противотанковых орудий

В 1944 году фирмой «Рейнметалл » было создано гладкоствольное артиллерийское противотанковое орудие 8Н63 калибром 80 мм, стреляющее оперённым кумулятивным снарядом весом 3,75 кг с зарядом взрывчатого вещества в 2,7 кг. Разработанные пушки и снаряды применялись в боевых действиях до конца Второй мировой войны.

В том же году фирма «Крупп» создала гладкоствольное противотанковое орудие PWK. 10.H.64 калибром 105 мм. Орудие стреляло оперённым кумулятивным снарядом массой в 6,5 кг. Снаряд и пушка не вышли из стадии испытаний.

Проводились опыты по применению высокоскоростных стреловидных подкалиберных снарядов типа Tsp-Geschoss (от нем. Treibspiegelgeschoss – подкалиберный снаряд с поддоном) для противотанковой борьбы (см. ниже «стреловидные снаряды зенитных орудий»). По неподтвержденным данным, немецкие разработчики в конце войны экспериментировали с применением природного урана в подкалиберных оперённых снарядах, которые закончились безрезультатно в связи с недостаточной прочностью нелегированного урана. Однако уже тогда была отмечена пирофорность урановых сердечников.

Стреловидные снаряды зенитных орудий

Эксперименты со стреловидными оперёнными подкалиберными снарядами для высотной зенитной артиллерии проводились на полигоне вблизи от польского города Близна под руководством конструктора Р. Хермана (R. Hermann). Были испытаны зенитные орудия калибра 103 мм с длиной ствола до 50 калибров. В ходе испытаний выяснилось, что стреловидные оперённые снаряды, достигавшие за счет своей незначительной массы очень больших скоростей, имеют недостаточное осколочное действие в связи с невозможностью помещения в них значительного заряда взрывчатого вещества. [] Кроме того, они продемонстрировали крайне низкую кучность из-за разреженности воздуха на больших высотах и, как следствие, недостаточной аэродинамической стабилизации. После того как стало очевидно, что стреловидные оперенные снаряды неприменимы для зенитной стрельбы, были сделаны попытки применить высокоскоростные подкалиберные снаряды с оперением для борьбы с танками. Работы были прекращены вследствие того, что серийные противотанковые и танковые пушки на то время имели достаточную бронепробиваемость, а Третий рейх доживал последние дни.

Кумулятивный снаряд: принцип действия

В боевой части заряда делается воронкообразное углубление, которое облицовывается слоем металла толщиной в один или несколько миллиметров. Данная воронка повернута широким краем к мишени.

После детонации, которая происходит у острого края воронки, взрывная волна распространяется к боковым стенкам конуса и схлопывает их к оси боеприпаса. При взрыве создается огромное давление, которое превращает металл облицовки в квазижидость и под огромным давлением перемещает ее вперед вдоль оси снаряда. Таким образом образуется струя металла, которая движется вперед с гиперзвуковой скоростью (10 км/с).

Следует отметить, что при этом металл облицовки не плавится в традиционном понимании этого слова, а деформируется (превращается в жидкость) под огромным давлением.

Когда струя металла входит в броню, прочность последней не имеет никакого значения. Важна ее плотность и толщина. Пробивная способность кумулятивной струи зависит от ее длины, плотности материала облицовки и материала брони. Максимальное проникающее действие возникает при взрыве боеприпаса на определенном расстоянии от брони (оно называется фокусным).

Взаимодействие брони и кумулятивной струи происходит по законам гидродинамики, то есть давление столь велико, что самая крепкая танковая броня при попадании на нее струи ведет себя как жидкость. Обычно кумулятивный боеприпас может пробить броню, толщина которой составляет от пяти до восьми его калибров. При облицовке из обедненного урана бронебойное действие увеличивается до десяти калибров.

Заправочные емкости

Заправочные емкости автомобиля довольно велики, и это обосновано мощностью двигателя и его предназначением:

  • бачок для заливки омывающей жидкости – 2,2 л;
  • сцепление (гидропривод) – 0,4 л;
  • тормозная жидкость – 1 л;
  • система ГУР – 3,2 л;
  • количество масла в амортизаторе (верно для любого) – 0,45 л;
  • коробка передач (масло) – 5,1 л;
  • задний мост (масло) – 3,3 л;
  • емкость системы охлаждения (для полного заполнения) – 16 л;
  • смазка двигателя и радиатора (суммарное количество) – 11,5 л;
  • емкость топливного бака – 125 л.

В нашей статье можно разобраться с техническими характеристиками КамАЗа-53215, а также узнать, какое оборудование можно устанавливать на его шасси.

Личная жизнь

Большую часть своей жизни Жуковский провел в одиночестве. Только на старости лет он, наконец, решил жениться на юной Елизаветой Рейтерн, дочери его старого друга. Свадьба состоялась в Германии, куда он уехал после отставки с государственной службы. Семейная идиллия длилась недолго — супруга вскоре заболела и часто находилась в подавленном состоянии. Несмотря на эти невзгоды, у пары рождаются дети. Сначала дочь Александра (1842), затем сын Павел (1845). Но оба супруга продолжают болеть, что стало препятствием к приезду в Россию.

Поэт умер 12 апреля 1852 года в немецком Баден-Бадене. Ныне его прах захоронен на кладбище Александро-Невской лавры.

Принцип работы кумулятивного снаряда

Во время Великой Отечественной войны был разработан кумулятивный снаряд, принцип действия которого основывался на направленном взрыве. В нем установлена металлическая конусная воронка, которая имеет толщину стенок до одного сантиметра. Широкий край воронки повернут напрямую к мишени. После столкновения взрывателя с объектом создается давление, которое идет по конусу в центр снаряда.

10 км
в секунду, такую скорость имеет высвобождаемая снарядом обратная струя

После чего снаряд высвобождает под огромным давлением в обратную сторону металлическую струю, которая имеет скорость до 10 км в секунду. Высвобождаемая снарядом металлическая струя начинает входить в броню или в любой другой объект на высокой скорости, при этом игнорируя толщину объекта воздействия. Именно таков принцип работы кумулятивного снаряда.

Кумулятивный снаряд в разрезе

Что такое кумулятивный снаряд? Если описать все более просто, то при воздействии кумулятивного снаряда броня под давлением превращается в жидкость.

Сравнение снарядов различного типа

Действие кумулятивной снаряда напрямую зависит от размера, используемого материала и объекта воздействия. Пробитие таких снарядов может превышать их калибр от пяти до десяти раз.

DámskýDeník

История создания компании Ceska Zbroovka, производителя карабина CZ 527

1918 год Создание Чехословацкой республики. Руководству республики принимает решение о создании собственного оружейного производства. Создаются несколько оружейных заводов — «Збройовка-Брно», «Ческа-Збройовка-Страконице» и «Шкода».
Июль 1936 года Появление компании «Ческа-Збройовка» как филиала завода «Ческа-Збройовка-Страконице», в свою очередь, являвшегося частью «Збройовки-Брно».
Март 1939 – май 1945 годы Компания «CZ» была переименована в «Bohmische Waffenwerke» — «Богемский оружейный завод».
1947 год Завод компании «CZ» был национализирован, после чего было начато производство оружия для нужд армии.
1958 год Переезд головного завода в город Угерский Брод, что позволило расширить ассортимент производимой продукции.
1988 год Фирма вернулась к своему оригинальному названию — Ceska Zbroovka. После смены политического режима в Чехословакии Ceska Zbroovka стала акционерным обществом, которая функционирует и по сей день.

Литература

  • Широкорад А. Бог войны третьего рейха. — М.: АСТ, 2003.
  • Карман У. История огнестрельного оружия. — М.: Центрполиграф, 2006.
  • Козырев М., Козырев В. Необычное оружие третьего рейха. — М.: Центрполиграф, 2008. — 399 с. — ISBN 978-5-9524-3370-0; ББК 63.3(0)62 К59.
  • Хогг Я. Боеприпасы: патроны, гранаты, артиллерийские снаряды, миномётные мины. — М.: Эксмо-Пресс, 2001.
  • Ирвинг Д. Оружие возмездия. — М.: Центрполиграф, 2005.
  • Дорнбергер В. ФАУ-2. — М.: Центрполиграф, 2004.
  • Каторин Ю. Ф., Волковский Н. Л., Тарнавский В. В. Уникальная и парадоксальная военная техника. — СПб.: Полигон, 2003. — 686 с. — (Военно-историческая библиотека). — ISBN 5-59173-238-6, УДК 623.4, ББК 68.8 К 29.

Тюнинг

Усовершенствовать мелкокалиберный карабин можно установкой оптики. Также производитель продумал возможность установления сошки – специальная насечка уже имеется.

Однако серьезных доработок не требуется – удобства и качество карабина, как утверждают многие пользователи, высоки. Вместо стандартного магазина можно поставить более емкие, 10-местные магазины. Но они немного портят строгий изящный силуэт карабина.

Карабин CZ 512 отлично подходит для длительных охотничьих вылазок, поскольку довольно прикладист, прост и достаточно легок. Благодаря оптимальной длине чистку можно проводить на привале, в любой момент сменить оптику.

Видео обзор CZ 512

Предыдущая запись Меткий стрелок
Следующая запись Нам не страшен серый волк … или всё-таки страшен?

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Отколы на внутренней поверхности брони

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector