Гексанитрогексаазаизовюртцитан — hexanitrohexaazaisowurtzitane

Содержание:

Применение[ | ]

Работа сапёров противоминного центра минобороны России в Алеппо (Сирия, 2020 год) Ежегодно в мире производится несколько миллионов тонн взрывчатых веществ. Ежегодный расход взрывчатых веществ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн. В военное время расход взрывчатых веществ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование взрывчатых веществ в США в 1990-х годах составляло около 2 миллионов тонн.

Военное применение

В военном деле взрывчатые вещества используются в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (пуле) определенной начальной скорости.

Промышленное применение

Взрывчатые вещества широко используются в промышленности для производства различных взрывных работ.

Существуют произведения монументального искусства, изготовленные с помощью взрывчатых веществ (монумент Crazy Horse в штате Южная Дакота, США).

В Российской Федерации запрещена свободная реализация взрывчатых веществ, средств взрывания, порохов, всех видов[источник не указан 1052 дня

]ракетного топлива, а также специальных материалов и специального оборудования для их производства, нормативной документации на их производство и эксплуатацию.

Научное применение

В научно-исследовательской сфере взрывчатые вещества широко используются как простое средство достижения в экспериментах значительных температур, сверхвысоких давлений и больших скоростей.

Инициирующие взрывчатые вещества

Обладают высокой чувствительностью к внешним воздействиям, их взрыв (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью.

Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль – детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Гремучая ртуть (фульминат ртути). Это вещество представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Ядовита, плохо растворяется в холодной и горячей воде. Получают его из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок: медных опилок и соляной кислоты.

Гремучая ртуть (фульминат ртути) под стеклом.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10 % влажности гремучая ртуть только горит, не детонируя, а при 30 % влажности не горит и не детонирует).

При отсутствии влаги, гремучая ртуть не взаимодействует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъединение алюминия). Поэтому гильзы гремучертутных капсюлей изготовлены из меди или мельхиора, а не из алюминия.

Гремучая ртуть разлагается в кислотах и щелочах, а также при нагревании до температуры +50°С и более, а концентрированная серная кислота вызывает ее взрыв. Применяется для снаряжения капсюлей-воспламенителей запалов.

Азид свинца (азотистоводородный свинец) представляет собой белый негигроскопичный мелкокристаллический порошок. При воздействии на него влаги и низких температур не снижает своей чувствительности и способности детонировать. Получают его из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Интересно то, что азид свинца является единственным из применяемых ВВ, не содержащим кислород.

Азид свинца (азотистоводородный свинец)

Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до +200°С он начинает разлагаться.

По сравнению с гремучей ртутью, азиц свинца менее чувствителен к искре, лучу пламени и удару: но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

Для надежности возбуждения детонации азида свинца от искры и накола его покрывают, соответственно, слоем тенереса или специального накольного состава.

Азид свинца химически не взаимодействует с алюминием, но взаимодействует с медью и ее сплавами, с образованием азида меди, который во много раз чувствительнее азида свинца, поэтому гильзы капсюлей снаряжаемых азидом свинца, изготовляются из алюминия, а не из меди. Применяется для снаряжения капсюлей-детонаторов.

Тенерес или ТНРС (тринитрорезорцинат свинца) – несыпучий мелкокристаллический порошок желтого цвета, малогигроскопичный и не взаимодействующий с металлами, представляет собой свинцовую соль стифниновой кислоты. Не подвержен разложению кислотами. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца. Растворимость тенереса в воде незначительна.

Инициирующая способность тоже весьма незначительна (даже 2 грамма тенереса не вызывают детонации тетрила), поэтому тенерес как самостоятельное инициирующее вещество не применяется, а вследствие своей большей чувствительности к искре и лучу пламени по сравнению с азидом свинца идет вместе с ним на снаряжение капсюлей-детонаторов.

Какие вопросы задают при проверке на полиграфе?

Чёткого перечня вопросов не существует. Они разные, подход всегда индивидуальный. Может быть, что один и тот же вопрос будет задан несколько раз.

Перед тестом на полиграфе кандидат общается с психологом, который даёт оценку направленности и формирует список вопросов.

При помощи полиграфа определяют:

  1. Не являются ли личные документы фальсификатом, не предоставлена ли ложная информация о себе?
  2. Есть ли какая-либо зависимость?
  3. Имеется ли отношение к преступным, экстремистским группировками или нелегальный бизнес?

Основные свойства ВВ

Вам будет интересно:Пополняем словарный запас: гвалт — это…

Их главными свойствами являются:

  • восприимчивость к наружным влияниям;
  • бризантность;
  • характерное агрегатное состояние;
  • количество энергии, выделяемое при взрыве;
  • химическая устойчивость;
  • стремительность детонации;
  • плотность;
  • фугасность;
  • длительность и обстоятельства работоспособного состояния.

Каждое взрывчатое вещество можно подробно описать, используя все его характеристики, но в большинстве случаев используют две из них:

  • Бризантность (ломать, дробить, разбивать). Т. е. это способность взрывчатого вещества производить разрушающие действия. Чем выше бризантность, тем быстрее формируются при взрыве газы и с большей силой происходит взрыв. В результате хорошо раздробится корпус снаряда, осколки разлетятся с большой скоростью, произойдет сильная ударная волна.
  • Фугасность – мера работоспособности ВВ, выполняющего разрушительные, метательные и другие действия. Основное влияние на нее оказывает объем газа, выделяемый при взрыве. Огромное количество газа способно осуществить большую работу, например, выбросить из района взрыва бетон, грунт, кирпич.

Бризантные взрывчатые вещества, обладающие повышенной фугасностью, подойдут для взрывных работ в шахтах, при ликвидации ледяных заторов, устройстве различных котлованов

При изготовлении снарядов сначала обращают внимание на бризантность, а фугасность отступает на второй план

Ссылки

Физико-химические методы анализа: общее понятие

Что собой представляют подобные способы идентификации соединений? Это такие методы, в основу которых положена прямая зависимость всех физических свойств вещества от его структурного химического состава. Так как эти показатели строго индивидуальны для каждого соединения, то физико-химические методы исследования крайне эффективны и дают 100 % результат при определении состава и прочих показателей.

Так, за основу могут быть взяты такие свойства вещества, как:

  • способность к светопоглощению;
  • теплопроводность;
  • электропроводность;
  • температура кипения;
  • плавления и прочие параметры.

Физико-химические методы исследования имеют существенное отличие от чисто химических способов идентификации веществ. В результате их работы не происходит реакция, то есть превращения вещества как обратимого, так и необратимого. Как правило, соединения остаются нетронутыми как по массе, так и по составу.

Маленький шаг для человека

24 июля 1969 года два члена экипажа «Аполлон-11» ступили на поверхность Луны: Нил Армстронг и Базз Олдрин совершили один выход и пробыли на спутнике Земли два с половиной часа. Всего с 1969 по 1972 год по программе «Аполлон» было выполнено 6 полётов с посадкой на Луне. За эти годы на спутнике побывало 12 человек.

6. «Венера»

Ещё одна советская программа, но уже по изучению Венеры; снова множество важнейших достижений и открытий. Советские аппараты выяснили, что у ближайшей соседки невероятно высокое давление и она никакой не близнец Земли. В 1970 году «Венера-7» совершила первую в истории мягкую посадку, а пять лет спустя «Венера-9» передала первые фотографии с поверхности. Неофициально Венеру считали «советской» планетой, так как Союз прикладывал огромные усилия для её изучения, оставив Марс конкурентам.

7. «Викинг»

В 1975 году два одинаковых аппарата «Викинг-1» и «Викинг-2» были отправлены к Марсу с целью найти следы жизни в грунте. Жизнь найти не удалось, но была совершена мягкая посадка, были получены первые образцы грунта и первые панорамные цветные фото с поверхности. Аппараты должны были проработать 90 суток, но значительно превысили этот срок. «Викинг-1», например, оставался функциональным 5 лет.

8. «Вояджер»

«Вояджер» (или «Путешественник») — проект NASA по исследованию дальних планет Солнечной системы — Юпитера, Сатурна, Нептуна, Урана и Плутона (который тогда ещё считался планетой), а также их спутников. «Вояджер-1» и «Вояджер-2» были запущены в 1977 году. Они впервые передали детальные цветные снимки дальних планет и в первый раз сфотографировали крупнейшие спутники. Кроме этого, «Вояджер-1» стал первым искусственным объектом, покинувшим пределы Солнечной системы. На борту он несёт послание внеземным цивилизациям.

9. «Спейс шаттл»

Программа NASA «Космическая транспортная система» стала новым и смелым шагом к пилотируемой космонавтике. Всего было создано 5 космических челноков: «Индевор», «Атлантис», «Дискавери», «Челленджер» и «Колумбия». Два последних погибли вместе с экипажем, а всего с 1981 по 2011 «Спейс шаттлы» совершили 135 полётов.

10. «Мир»

В 1986 году Советский Союз вывел на околоземную орбиту базовый блок станции «Мир». Сама станция, без преувеличения, стала символом эпохи. Более 12 лет станция «Мир» имела постоянное «население»: Валерий Поляков пробыл на «Мире» 437 суток — и это рекорд пребывания человека в космосе. Было проведено 23 000 экспериментов и получено огромное количество данных о межпланетном пространстве.

11. «Хаббл»

Телескоп «Хаббл», выведенный на орбиту в 1990 году, стал «глазами» человечества. Орбитальный телескоп смог заглянуть так далеко, как никто прежде, и показать такие красоты Вселенной, каких и представить себе никто не мог. Удивительная история: если бы «Хаббл» продавался в супермаркете, то шёл бы по скидке как уценённый товар. Его зеркало, несмотря на то что являлось самым точно выверенным и дорогим в истории, имело дефект. Не удавалось достичь заданной резкости, хотя качество снимков всё равно было лучше, чем у любых наземных телескопов. Дефект был устранён в 1993, ремонт проходил в открытом космосе и длился 10 дней.

12. «Соджорнер»

Первый марсоход, успешно доставленный на Красную планету. «Соджорнер» дословно означает «временный житель» или «проезжий». Планировалось, что марсоход проработает на поверхности 7 сол (сол — марсианские сутки — 24 часа и 40 минут), но он работал в течение 83 сол до того момента, как спускаемая станция, действовавшая в качестве ретранслятора, не вышла из строя. После этого контакт с «Соджорнером» был потерям, его местонахождение сейчас неизвестно.

13. МКС (1998)

Международная космическая станция пришла на замену «Миру» в 1998 году. МКС почти в 5 раз больше предшественника и служит космической «дачей» для человечества по сей день. Всего в проекте МКС участвует 14 стран, хотя наибольшую нагрузку несут, конечно, США и Россия.

14. «Новые рубежи»

Автоматическая межпланетная станция «Новые горизонты» в рамках программы NASA «Новые рубежи» была запущена в 2006 году. Её цель — изучение Плутона и других объектов пояса Койпера. Пояс Койпера — это область Солнечной системы, похожая на пояс астероидов между Марсом и Юпитером, только этот пояс находится на дальних границах Солнечной системы и состоит из карликовых планет вроде Плутона. Кроме этого, аппарат «Новые горизонты» стал самым быстрым в истории.

15. Планы по колонизации Марса от Илона Маска

SpaceX — частная компания, основанная Илоном Маском с амбициозной целью ни много ни мало колонизировать Марс. Самым важным достижением на данный момент является не возвращение и посадка первой ступени Falcon и не запуск автомобиля в сторону Марса, а возобновление интереса к космосу в широких массах. Маск вместе со SpaceX вернул человечеству великую мечту.

3) Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5, показал, что взрывчатка оказалось лишь в два раза мощнее тротила. После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт. В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад – в офис фирмы EXCOA.

Методы защиты космических аппаратов от столкновений с космическим мусором

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Новое сверхмощное взрывчатое вещество синтезируют в американских лабораториях

Каждое новое поколение пытается перещеголять поколения предыдущие в том, что называется начинкой для адских машинок и другого оружия, другими словами – в поисках мощного взрывчатого вещества. Казалось бы, эпоха взрывчатки в виде пороха понемногу уходит в историю, однако поиски новых взрывчатых веществ не прекращаются. Чем меньше масса взрывчатого вещества, и чем больше его поражающая сила, тем лучшим оно представляется военным специалистам. Активизировать поиски такого взрывчатого вещества диктует робототехника, а также использование небольших ракет и бомб большой поражающей силы на БПЛА.

Естественно, что идеальное с военной точки зрения вещество вряд ли вообще будет когда либо обнаружено, но вот недавние разработки говорят о том, что нечто близкое к такому понятию получить всё же можно. Под близостью к идеальности здесь понимается стабильное хранение, высокая поражающая сила, небольшой объем и легкая транспортировка. Не нужно забывать, что цена такого взрывчатого вещества тоже должна быть приемлемой, иначе создание на его основе оружия может просто опустошить военный бюджет той или иной страны.

Разработки уже долгое время идут вокруг использования химических формул таких веществ, как тринитротолуол, пентрит, гексоген и ряд других. Однако в полной мере новинок «взрывная» наука предложить может крайне редко. Именно поэтому появление такого вещества как гексантирогексаазаизовюрцитан (название – язык сломаешь) можно считать настоящим прорывом в своей области. Чтобы не ломать язык, ученые решили дать этому веществу более удобоваримое название – CL-20. Это вещество впервые было получено еще около 26 лет назад – в далеком уже 1986 году в американском штате Калифорния. Его особенность заключается в том, что плотность энергии в этом веществе пока максимальная в сравнении с другими веществами. Высокая энергетическая плотность CL-20 и малая конкуренция при его производстве приводят к тому, что стоимость такой взрывчатки сегодня просто астрономическая. Один килограмм CL-20 стоит около 1300 долларов. Естественно, что такая цена не позволяет использовать взрывчатый агент в промышленных масштабах. Однако уже вскоре, считают эксперты, цена этой взрывчатки может существенно упасть, так как есть варианты по альтернативному синтезу гексантирогексаазаизовюрцитана.

Если сравнивать гексантирогексаазаизовюрцитан с самым эффективным на сегодняшний день взрывчатым веществом, применяемым в военных целях (октогеном), то стоимость последнего составляет около ста долларов за кг. Однако именно гексантирогексаазаизовюрцитан проявляет большую эффективность. Скорость детонации CL-20 составляет 9660 м/с, что на 560 м/с больше, чем у октогена. Плотность CL-20 также выше, чем у того же октогена, а значит, и с перспективами у гексантирогексаазаизовюрцитана тоже должно быть всё в порядке.

Одним из возможных направлений в применении CL-20 сегодня считают беспилотники. Однако здесь есть проблема, потому что CL-20 очень чувствителен к механическим воздействиям. Даже обычная тряска, которая вполне может произойти с БПЛА в воздухе способна вызвать детонацию вещества. Чтобы избежать взрыва самого беспилотника специалисты предложили использовать CL-20 в интеграции с пластиковым компонентом, который будет снижать уровень механического воздействия. Но как только такие эксперименты провели, оказалось, что гексантирогексаазаизовюрцитан (формула С6Н6N12О12) сильно теряет свои «убойные» свойства.

Получается, что перспективы у этого вещества огромные, но вот за два с половиной десятилетия им так никто и не сумел разумно распорядиться. Но эксперименты продолжаются и сегодня. Американец Адам Матцгер работает над совершенствованием CL-20, пытаясь изменить форму этой материи.

Матцгер решил использовать кристаллизацию из общего раствора для получения молекулярных кристаллов вещества. В итоге у них вышел вариант, когда на 2 молекулы CL-20 приходится 1 молекула октогена. Скорость детонации этой смеси находится между скоростями двух указанных веществ по отдельности, но при этом новое вещество гораздо стабильнее самого CL-20 и эффективнее октогена.

Чем ни самая эффективная взрывчатка в мире?..

Октоген

Американские химики впервые получили это вещество в качестве побочного продукта одного из процессов получения гексогена в 1941 году. Через несколько лет октогеном заинтересовались в Пентагоне — оказалось, что новая взрывчатка мощнее гексогена. Считается, что октоген по своей разрушительной мощи превосходит тротил в четыре раза.

При взрыве килограмма тротила выделяется в шесть–восемь раз меньше энергии, чем при сгорании килограмма угля, эффект разрушения достигается за счет того, что энергия при взрыве выделяется в десятки миллионов раз быстрее, чем при  горении.

Однако процесс производства такой взрывчатки на тот момент был дороже по сравнению с гексогеном, поэтому вытеснить его новое вещество не смогло, хотя американская армия применяла новинку во Вьетнаме. Только в 1980-х ученые придумали эффективную и недорогую технологию синтеза октогена.

Что со всем этим делать

Никто пока точно не знает, как утилизировать космический мусор. Но с 1993 года, когда проблему впервые подняли на международный уровень — генсек ООН заявил, что не бывает засорения национального околоземного пространства, только общего,  — появилось несколько теорий.

Ученые из разных стран предлагали:

  1. Собирать обломки гигантскими металлическими сетями;.
  2. Буксировать их дальше от Земли или менять их орбиты с помощью ионных пучков, наземных лазеров;.
  3. Испарять мусор лазерами, установленными на спутниках;.
  4. Отбрасывать их огромными электромагнитами в земную атмосферу, чтобы они в ней сгорали;.
  5. Просто собирать его для дальнейшей переработки;.
  6. Рассеять вокруг Земли облако вольфрамовой пыли толщиной 30 км, которое будет захватывать мелкий мусор.

Экономически рентабельного и работающего метода по уничтожению космического мусора на орбитах более 600 км (там не сказывается очищающий эффект от торможения об атмосферу) пока нет. Хоть какие-то очертания есть у двух идей.

Во-первых, есть швейцарский стартап CleanSpace.  Уже несколько лет он работает над аппаратом, который будет уводить с орбиты отработавшие свое спутники. На сайте компании долгое время было написано, что уборщик будет запущен в 2018 году. Месяц назад стало известно, что запуск отложен до 2024 года.

В Федеральной политехнической школе Лозанны, где базируется стартап, отметили, что главная сложность — научить аппарат распознавать разные виды объектов. Для начала — студенческий наноспутник (10×10 см) SwissCube, который крутится вокруг Земли с 2009 года. Он станет первой жертвой CleanSpace One. С помощью сети аппарат должен захватывать спутник в ловушку.

Глава проекта Люк Пиге (Luc Piguet) говорил, что, для того чтобы находить спутники, CleanSpace One будет ориентироваться на мерцание света, отражающегося от спутника при вращении.

Размеры CleanSpace One, судя по визуализации, будет несильно больше, чем у наноспутника, который станет его целью. В планах у компании — создать платформу, к которой будет крепиться несколько таких чистильщиков. Они должны будут убрать больше 3 тыс. частиц мусора с орбиты.

Во-вторых, на 2023 год запланирован запуск аппарата e.Deorbit, который создается Европейским космическим агентством. И он будет значительно крупнее, чем CleanSpace One. Заявленный вес — 1,6 тыс. кг.

Первой целью e.Deorbit станет самый большой спутник в истории, 26-метровый восьмитонный Envisat. Он был запущен для исследования Земли из космоса в 2002 году. Последний раз выходил на связь в 2012-м. Аппарат захватит Envisat с помощью щупалец или сети (авторы пока не решили). И вместе с ним сойдет с орбиты Земли, вероятно, сбросив в какой-то момент спутник, чтобы тот сгорел в атмосфере.

Похожий аппарат из Великобритании, только с гарпуном вместо сети или щупалец, должен был быть запущен в апреле 2018 года. Однако информация на сайте проекта RemoveDEBRIS не обновлялась и судьба его неизвестна.

Своей проект есть и у России. По крайней мере он упоминается в Федеральной космической программе на 2016−2025 годы. К 2025 году должен быть создан уборщик мусора с геостационарных орбит. Планируется, что в течение полугода каждый аппарат будет переводить на орбиту захоронения до 10 объектов.

Но все эти проекты будут реализованы не скоро, а судя по истории с CleanSpace One — даже очень не скоро. Так что пока за мусором наблюдают, его считают и надеются, что убирать его начнут до того, как Землю накроет мусорный купол, который лишит нас интернета.

«Малыш» и «Толстяк»: Хиросима и Нагасаки

Названия этих двух японских городов давно уже стали синонимами масштабной катастрофы. Американские военные фактически протестировали атомные бомбы на людях, сбросив снаряды на Хиросиму 6 августа и на Нагасаки 9 августа 1945 года. Большинство пострадавших от взрывов были вовсе не военными, а гражданскими. Дети, женщины, старики, — их тела мгновенно превращались в уголь. Оставались лишь силуэты на стенах – так действовало световое излучение. Пролетавшие рядом птицы сгорали в воздухе.

«Грибы» ядерных взрывов над Хиросимой и Нагасаки

Количество пострадавших точно определить не удалось до сих пор: многие погибли не сразу, а позже, в результате развившейся лучевой болезни. «Малыш» приблизительной мощностью от 13 до 18 килотонн тротила, сброшенный на Хиросиму, убил от 90 до 166 тысяч человек. В Нагасаки «Толстяк» мощностью в 21 килотонну тротила оборвал жизни от 60 до 90 тысяч человек.

«Толстяк» и «Малыш» выставлены в музее — как напоминание о разрушительной мощи ядерного оружия

Это был первый и пока что единственный случай, когда сила ядерного оружия была применена в ходе военных действий.

Навигация

См. также

Примечания

Поролоновые приманки, особенности материала, рейтинг лучших моделей

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Трициклическая мочевина

Бутан

Бутан, газообразное соединение, которое технически получено из нефти. Это произошло из естественно разлагающегося вещества, которое производится перегонкой ископаемого топлива. Основное применение бутана — это приготовление пищи во дворе, кемпинг и зажигалки из сигарет. Транспортные средства и отопительное оборудование используют деликатный нефтяной газ, который состоит из комбинированного бутана и нефти.

Если утечка остается невидимой и воспламеняется в результате пожара, бутан может взорваться в местах с ограниченной вентиляцией. 6 марта 2018 года в городе Мичиган (Грейлорд) взорвался лабораторный хэш бутана. Власти подозревали, что главным виновником преступления было создание неразбавленного химического вещества путем взрыва растения, изготовленного из марихуаны, бутаном.

Люди, которые руководили лабораторией, получили физическую травму. Два человека, причастных к преступлению, были отправлены в ближайшую больницу до прибытия чиновников. Из-за их телесных повреждений два главных участника преступления были переданы в Специализированное отделение для ожогов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector