Классическая теория тяготения ньютона
Содержание:
- Гравитационное излучение
- Исторический очерк
- Гравитация как проявление геометрических свойств пространства-времени
- Интересные факты
- Удаление насекомых с лобового стекла автомобиля
- Гравитационное притяжение
- Природа силы всемирного тяготения
- Гравитация Эйнштейна
- Физический механизм гравитации
- Искусственная гравитация и для чего она нужна
- Описание конструкции
- ПРИМЕРЫ ЗАДАНИЙ
- В чём измеряется гравитационная постоянная
- На замену МиГ-31
- Сноски
- Подробно о том, что собою представляет керамбит
- Окончание войны
- Гравитационные волны
- Итоги
- Что мы узнали?
- Тест по теме
Гравитационное излучение
Гравитационное излучение в двойной системе
Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.
Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.
Исторический очерк
Закон всемирного тяготения Ньютона
Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).
В своём основном труде «Математические начала натуральной философии» () Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что:
- наблюдаемые движения планет свидетельствуют о наличии центральной силы;
- обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.
Теория Ньютона имела ряд существенных отличий от гипотез предшественников. Ньютон не просто опубликовал предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:
- закон тяготения;
- закон движения (второй закон Ньютона);
- система методов для математического исследования (математический анализ).
В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел и тем самым создаёт основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.
Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической. Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.
В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнанным, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы. Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества. После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.
В то же время ньютоновская теория содержала ряд трудностей. Главная из них — необъяснимое дальнодействие: сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс. В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия.
Гравитация как проявление геометрических свойств пространства-времени
Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация – это геометрическое понятие.
Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы – это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.
Интересные факты
- Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
- Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
- Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
- Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
- Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
- Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.
Удаление насекомых с лобового стекла автомобиля
Гравитационное притяжение
Закон всемирного тяготения
В рамках классической механики гравитационное притяжение описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1{\displaystyle m_{1}} и m2{\displaystyle m_{2}}, разделёнными расстоянием r{\displaystyle r}, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:
Здесь G{\displaystyle G} — гравитационная постоянная, равная примерно 6,67×10−11 м³/(кг·с²).
Этот закон выполняется в приближении при малых по сравнению со скоростью света v≪c{\displaystyle v\ll c} скоростей и слабого гравитационного взаимодействия (если для изучаемого объекта, расположенного на расстоянии R{\displaystyle R} от тела массой M{\displaystyle M}, величина GMc2R≪1{\displaystyle {\frac {GM}{c^{2}R}}\ll 1}). В общем случае гравитация описывается общей теорией относительности Эйнштейна.
Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.
Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение.
В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что, как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.
Большие космические объекты — планеты, звёзды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.
Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).
Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.
Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, чёрные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.
Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.
Природа силы всемирного тяготения
Если важная роль гравитации в работе Вселенной понятна и неоспорима, то дать чёткий ответ на вопрос, откуда эта сила появляется, гораздо сложнее. В первой половине XX века Альберт Эйнштейн предложил специальную и общую теории относительности, в которых раскрыл своё видение природы всемирного тяготения. Согласно учёному, пространство и время представляют собой пространственно-временной континуум – четырёхмерное пространство, одно из измерений которого – время. Но так как люди воспринимают окружающее их пространство и течение времени в отдельности друг от друга, то они видят лишь проекцию континуума. Эйнштейн предположил, что гравитация возникает вследствие того, что тела, обладающие массой, вызывают деформацию пространства при проецировании на него четырёхмерного континуума.
деформация пространства телом большой массы
Более понятной идея учёного будет выглядеть, если проиллюстрировать её с помощью двух шаров разной массы и обычного листа бумаги. Допустим, что лист держат за края в горизонтальном положении, а в его центр помещают один из шаров, более тяжёлый. Естественно, бумага прогнётся. Покатив по прямой линии лёгкий шарик, наблюдатель обнаружит, что его траектория является дугообразной, стремящейся к первому, более тяжёлому шару. Причём, с позиции шара меньшей массы, его движение продолжает быть прямолинейным. В этой иллюстрации и заключено упрощённое видение возникновения гравитации как явления.
Гравитация Эйнштейна
Пытаясь разгадать величайшие тайны Вселенной Альберт Эйнштейн, которому на тот момент исполнилось 30 лет, понял, что пространство-время изгибает не сила, но масса. Изгибы, которые оставляют под собой массивные объекты, например Солнце, подсказывают энергии как двигаться.
Большой шар сильно искривляет пространство-время, заставляя меньший шар изменить свой курс и следовать за падением.
Вместо шара и ткани также можно представить себе автомобиль, который движется по извилистой дороге – когда автомобиль спускается с холма, то ускоряется. Массивные объекты во Вселенной подобны ускоряющемуся автомобилю – они создают экстремальные изгибы в пространстве-времени.
Интересно, что гравитация способна ускорять объекты, когда они входят (или приближаются) в глубокие гравитационные колодцы. Гравитационные колодцы – это концепция, согласно которой чем массивнее тело, тем глубже и больше порождаемый им гравитационный колодец.
Физический механизм гравитации
Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.
Искусственная гравитация и для чего она нужна
С силой тяжести связаны два понятия, которые, несмотря на свой текущий теоретический статус, хорошо известны широкой публике. Это антигравитация и искусственная гравитация.
Антигравитация – процесс противодействия силе притяжения, способный существенно уменьшить ее или даже заменить отталкиванием. Овладение подобной технологией привело бы к реальной революции в транспорте, авиации, исследовании космического пространства и кардинально изменило всю нашу жизнь. Но в настоящее время возможность антигравитации не имеет даже теоретического подтверждения. Более того, исходя из ОТО, подобный феномен и вовсе не осуществим, так как в нашей Вселенной не может быть отрицательной массы. Возможно, что в будущем мы узнаем о притяжении больше и научимся строить летательные аппараты на основе этого принципа.
Антигравитация. Увы, пока только так…
Искусственная сила тяжести – это рукотворное изменение существующей силы гравитации. Сегодня подобная технология нам не слишком нужна, но ситуация однозначно изменится после начала долгосрочных космических путешествий. И дело заключается в нашей физиологии. Тело человека, «приученное» миллионами лет эволюции к постоянной гравитации Земли, крайне негативно воспринимает воздействие пониженной силы тяжести. Длительное пребывание даже в условиях лунной гравитации (в шесть раз слабее земной) может привести к печальным последствиям. Иллюзию притяжения можно создавать с помощью других физических сил, например, инерции. Однако подобные варианты сложны и дорого стоят. В настоящий момент искусственная гравитация не имеет даже теоретических обоснований, очевидно, что ее возможная практическая реализация – это дело весьма отдаленного будущего.
Сила тяжести – это понятие, известное каждому еще со школьной скамьи. Казалось бы, ученые должны были досконально исследовать этот феномен! Но гравитация так и остается глубочайшей тайной для современной науки. И это можно назвать прекрасным примером того, насколько ограничены знания человека о нашем огромном и замечательном мире.
Автор статьи:
Егоров Дмитрий
Увлекаюсь военной историей, боевой техникой, оружием и другими вопросами, связанными с армией. Люблю печатное слово во всех его формах.
Описание конструкции
Фантом представляет собой цельнометаллический низкоплан со стреловидным крылом (45 градусов), концевые части которого отогнуты вверх на 12 градусов, что способствует повышению путевой устойчивости. Киль большой площади имеет руль направления. Поверхности стабилизатора установлены с отрицательным углом поперечного V и на больших углах атаки играют роль подфюзеляжных килей, затягивая сваливание самолета. Фюзеляж имеет плоскую нижнюю поверхность, плавно переходящую в крыло, обеспечивая увеличение подъемной силы. При размещении на авианосце концевые части крыла складываются. Механизация крыла включает в себя: закрылки, элероны и отклоняемые носки. Для повышения эффективности управления и снижения лобового сопротивления имеется система сдува пограничного слоя с закрылков и носка крыла. Обшивка средней и задней частей фюзеляжа (над двигателями и за ними) выполнена двухслойной. Между слоями прогоняется воздух для охлаждения внешней поверхности. В хвостовой части установлен тормозной парашют диаметром около 5 м (в палубной авиации он используется как противоштопорный). Для зацепления за тросы аэрофинишера в задней части фюзеляжа шарнирно закреплен тормозной крюк. Выпускается он под действием давления пружины амортизатора. Крепление “Фантома” к челноку катапульты при взлете осуществляется с помощью биделя — стального троса, середина которого закрепляется на челноке, а концы на “крючках” в корневой части крыла. Применение этой системы связано с большой базой шасси самолета. После взлета трос сбрасывается. Шасси трехстоечное; основные стойки одноколесные и убираются в фюзеляж. Передняя стойка двухколесная, убирается назад.
Топливо размещается в фюзеляжных и крыльевых баках, общая емкость которых — 7570 л. Под крылом могут подвешиваться дополнительно два бака емкостью по 1400 л каждый. Есть еще топливный бак, подвешиваемый под фюзеляжем; он вмещает 2270 л горючего. Имеется также система дозаправки топливом в воздухе; штанга топливоприемника установлена справа у кабины летчика.
На самолете используются двигатели семейства J-79 с тягой от 7325 до 8120 кг, в зависимости от модификации машины. На F-4S установлены двигатели с пониженным дымлением. Последнее существенно снизило заметность истребителя в воздухе. До этого опытные летчики замечали “Фантом” на дальности почти 100 км, при высоте полета 10 000 м.
Оборудование F-4 состоит из бортовой РЛС, инфракрасной системы обнаружения, навигационной системы, бомбардировочного прицела, автоматической системы посадки на авианосец и системы автоматического управления полетом. Разведывательная модификация (RF-4B) отличается удлиненной носовой частью, в которой установлены различные фотоаппараты и инфракрасная станция разведки. Кроме этого, на RF-4B имеется РЛС бокового обзора. Все модификации самолета оборудованы системой РЭБ, антенны которой расположены в верхней части воздухозаборников.
Модификации
Модификации истребителя F-4 «Фантом» 2:
AH-1 — Прототип F-4 “Phantom”2. Контракт выдан 18 ноября 1954 года.
F-4A — первый серийный самолёт данной серии, начал выпускаться в декабре 1960г. в г. Сент-Луис
F-4B — улучшенный вариант палубного всепогодного истребителя ПВО ВМС, начал поставляться ВМС с июня 1961г.
F-4C — “сухопутная” модификация истребителя для ВВС США (583 самолёта с 1963 по 1966 г.). F-4C остались только в варианте разведчика (RF-4C)
F-4D — улучшенный вариант F-4C (825 самолётов с 1966 по 1968 г.). F-4D все еще используются в Иране и Южной Корее.
F-4E — усовершенствованный многоцелевой истребитель для ВВС США (1387 самолётов с 1967 по 1976г.). Выпускается также в варианте тактического боевого самолета (до 7260 кг ракет и бомб на внешней подвеске). Все еще используется во многих странах.
F-4EJ Kai — вариант F-4E для Японии (Japan) отличается от F-4E установкой радара AN/APG-66 (модификация радара F-16) и подвеской ПКР ASM-1 местной разработки.
F-4G “Wild Weasel” (“Уайлд Уизл”) — противорадиолокационный самолёт, переоборудованный из F-4E. Снят с вооружения и заменен F-16C Wild Weasel.
F-4J — усовершенствованный палубный многоцелевой истребитель, выпускался с декабря 1966 по июль 1972 г. (522 самолёта).
F-4К — Phantom FGR.1
F-4M — Phantom FGR.2
F-4N — палубный истребитель ВМС США, переоборудованный из F-4B и имеющий упрочнённую конструкцию и усовершенствованное оборудование (148 самолётов с февраля 1973 по март 1978г.).
F-4S — палубный истребитель ВМС США, переоборудованный из F-4J, также имеет упрочнённую конструкцию конструкцию, модернизированные оборудование и двигатель. В настоящее время F-4S снят с вооружения и заменен F/A-18
RF-4C — невооружённый разведчик на основе F-4C (505 самолётов с 1964 по 1974 г.).
RF-4E — невооружённый разведчик на основе F-4E. Единственная модификация “Фантома”, оставшаяся на вооружении ВВС США. Воевали в Ираке.
Phantom FGR.2 (F-4M) — перехватчик английских ВВС. Снят с вооружения и заменен на Tornado.
Phantom-2000 — F-4E модернизированный в 1991 году израильскими фирмами. Установлена авионика, аналогичная самолету Lavi, разработка которого была запрещена американцами. В частности — нашлемная система целеуказания, радар EL/M-2032, новые ракеты “воздух-земля” “Попай” и “воздух-воздух” “Питон-3” и “Питон-4”. Кроме израильских самолетов в этот вариант модернизируются 54 F-4E ВВС Турции.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Сила тяготения между двумя телами уменьшится в 2 раза, если массу каждого тела
1) увеличить в √2 раз
2) уменьшить в √2 раз
3) увеличить в 2 раза
4) уменьшить в 2 раза
2. Массу каждого из двух однородных шаров увеличили в 4 раза. Расстояние между ними тоже увеличили в 4 раза. Сила тяготения между ними
1) увеличилась в 64 раза
2) увеличилась в 16 раз
3) увеличилась в 4 раза
4) не изменилась
3. В вершинах прямоугольника расположены тела одинаковой массы. Со стороны какого тела на тело 1 действует наибольшая сила?
1) со стороны тела 2
2) со стороны тела 3
3) со стороны тела 4
4) со стороны всех тел одинаковая
4. Закон всемирного тяготения справедлив
A. Для всех тел
Б. Для однородных шаров
B. Для материальных точек
Правильный ответ
1) А
2) только Б
3) только В
4) и А, и Б
5. На ящик массой 5 кг, лежащий на полу лифта, движущегося с ускорением \( a \) вертикально вниз, действует сила тяжести
1) равная 50 Н
2) большая 50 Н
3) меньшая 50 Н
4) равная 5 Н
6. Сравните значения силы тяжести \( F_э \), действующей на груз на экваторе, с силой тяжести \( F_м \), действующей на этот же груз на широте Москвы, если груз находится на одной и той же высоте относительно поверхности Земли.
1) \( F_э=F_м \)
2) \( F_э>F_м \)
3) \( F_э<F_м \)
4) ответ может быть любым в зависимости от массы тел
7. Сила тяжести, действующая на космонавта на поверхности Луны,
1) больше силы тяжести, действующей на него на поверхности Земли
2) меньше силы тяжести, действующей на него на поверхности Земли
3) равна силе тяжести, действующей на него на поверхности Земли
4) больше силы тяжести, действующей на него на поверхности Земли на экваторе, и меньше силы тяжести, действующей на него, на поверхности Земли на полюсе
8. Сила тяжести, действующая на тело, зависит от
А. Географической широты местности
Б. Скорости падения тела на поверхность Земли
Правильный ответ
1) только А
2) только Б
3) ни А, ни Б
4) и А, и Б
9. Какое(-ие) из утверждений верно(-ы)?
Сила тяжести, действующая на тело у поверхности некоторой планеты, зависит от
А. Массы планеты.
Б. Массы тела.
1) только А
2) только Б
3) ни А, ни Б
4) и А, и Б
10. Первая космическая скорость зависит
A. От радиуса планеты
Б. От массы планеты
B. От массы спутника
Правильный ответ
1) только А
2) только Б
3) только А и Б
4) А, Б, В
11. Установите соответствие между физической величиной (левый столбец) и формулой, выражающей её взаимосвязь с другими величинами (правый столбец). В ответе запишите подряд номера выбранных ответов
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Сила тяжести
Б. Ускорение свободного падения на поверхности Земли
B. Закон всемирного тяготения
ФОРМУЛА
1) \( F=G\frac{m_1m_2}{r^2} \)
2) \( F_т=mg \)
3) \( g=G\frac{M_З}{(R_З+h)^2} \)
4) \( g=G\frac{M_З}{R^2} \)
12. Среди приведённых утверждений выберите два правильных и запишите их номера в таблицу
1) Гравитационная постоянная показывает, с какой силой притягиваются друг к другу два тела массой 1 кг.
2) Значение силы тяжести, действующей на тело, зависит от скорости его движения.
3) Ускорение свободного падения зависит от массы и радиуса планеты.
4) При увеличении расстояния между телами в 3 раза сила тяготения между ними уменьшается в 9 раз.
5) Изменение массы одного из взаимодействующих тел не влияет на значение силы тяготения.
Часть 2
13. Человек на Земле притягивается к ней с силой 700 Н. С какой силой он притягивался бы к Марсу, находясь на его поверхности, если радиус Марса в 2 раза меньше радиуса Земли, а масса в 10 раз меньше, чем масса Земли?
В чём измеряется гравитационная постоянная
Несмотря на то, что гравитационная постоянная численно равна силе, её единицы измерения не ньютоны. Размерность коэффициента может показаться страшной –
Согласно Международной системе единиц (системе интернациональной или СИ), сила измеряется в ньютонах, причём
то есть 1 ньютон – сила, изменяющая скорость килограммового объекта на 1 м/с за одну секунду.
После открытия закона тяготения определено: пара килограммовых тел притягивается друг к другу силой со значением, зависящим обратно пропорционально от квадрата расстояния между объектами.
То есть единица измерения гравитационной силы –
и размерность не совпадает с привычной
Проведём математические вычисления самостоятельно.
Нужно уравнять
Для этого
2 3
Получилась требуемая размерность.
Следовательно, постоянная имеет размерность
На замену МиГ-31
Новая машина заменит перехватчик МиГ-31, который бы разработан еще в 1970-е годы. “Тридцать первый” способен развивать скорость до трех тысяч километров в час, а его боевой радиус превышает 700 километров. Показатели внушительные, но МиГ-41, кажется, готовится наголову превзойти своего предшественника.
Создаваемый истребитель, по словам летчика-испытателя Анатолия Квочура, сможет передвигаться со скоростью до 4,3 Маха — это более пяти тысяч километров в час. Такие возможности сделают новый МиГ самым быстрым самолетом на планете. Что касается предполагаемого радиуса действия будущего истребителя, то он может достичь 1300 километров.
Сноски
Подробно о том, что собою представляет керамбит
Окончание войны
Женевские переговоры подвели гонку вооружений к развязке: обе страны признали недопустимость атомной войны. СССР вывел войска из Восточной Европы, тут же затянутой «бархатными революциями».
После двух мировых войн, разоружение
преобразовалось в ведущее демократическое направление. Возникшая в 1945-ом ОНН назвала себя Советом безопасности и нацелилась поддерживать мир. В ней проходили все переговоры, направленные на контроль ядерного вооружения.
Социализм проиграл капитализму. США стали единственной сверхдержавой.
В 1991-ом произошли роспуск ОВД и развал Советского Союза.
Гравитационные волны
На этом можно было бы и закончить, но говорю же, понятие очень обширное, поэтому заварите кофейку, мне еще есть, что вам рассказать. Гравитационные волны излучаются массой, а после существуют сами по себе. Это определенные изменения гравитационного поля.
Чтобы представить, что это такое, достаточно представить, что водная гладь – это пространство-время, а камень – это, допустим, Земля. Бросьте камень на воду – от него пойдет рябь ровными кругами во все стороны. Поместите Землю в космос, она начнет излучать гравитационные волны. Надеюсь, понятно.
Их обнаружили относительно недавно – в 2015 году – благодаря изучению слияния двух черных дыр, из которых образовалась одна более массивная. В этом процессе и «заметили» исходящие от них гравитационные волны.
Черные дыры как гравитационные волны
Итоги
За годы войны в России было разворовано огромное количество денежных средств. Казнокрадство на Дальнем Востоке процветало, что создало проблемы со снабжением армии. В американском городе Портсмут при посредничестве президента США Т. Рузвельта был подписан мирный договор, по которому Россия передавала южный Сахалин и Порт-Артур Японии. Также Россия признавала за Японией господство в Корее.
Поражение России в войне имела огромное значение для будущей политической системы в России, где будет ограничена власть императора впервые за несколько сотен лет.
Что мы узнали?
Говоря кратко о русско-японской войне, следует отметить, что признай Николай II за японцами Корею, войны бы не было. Однако гонка за колониями породила столкновение двух стран, хотя еще в XIX веке отношение к русским у японцев было в целом более положительное, чем к многим другим европейцам.
Тест по теме
-
Вопрос 1 из 10
Что стало главной причиной русско-японской войны?
- Противоречия Антанты и Тройственного союза
- Столкновение сфер влияния России и Японии
- Нехватка ресурсов в Японии
- Стремление России завоевать Корею
Начать тест(новая вкладка)