Что происходит во время преодоления звукового барьера самолетом
Содержание:
- Содержание
- Режимы [ править ]
- Классификация режимов Маха [ править ]
- Характеристики двигателя ЗМЗ-511/513 ГАЗ-53, 3307, ГАЗ-66
- Блистательные перспективы и скромные реалии линкора «Тирпиц»
- Историческая справка
- Военно-воздушные силы
- Источники
- История проекта
- Навигация
- Объявления о продаже ГАЗ 69
- От «занедорого» до «зрелищно»
- Литература
- Характеристики потока
- Имперские легионы
- Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?
- Ударная волна, вызванная летательным аппаратом
- Описание двигателя ГАЗ-53
Содержание
Режимы [ править ]
Гиперзвуковое течение можно приблизительно разделить на несколько режимов. Выбор этих режимов грубый из-за размытия границ, где можно обнаружить тот или иной эффект.
Идеальный газ
В этом режиме газ можно рассматривать как идеальный газ . Расход в этом режиме все еще зависит от числа Маха. Моделирование начинает зависеть от использования стенки с постоянной температурой, а не адиабатической стенки, обычно используемой при более низких скоростях. Нижняя граница этой области составляет около 5 Махов, когда ПВРД становятся неэффективными, а верхняя граница — около 10-12 Махов.
Двухтемпературный идеальный газ
Это подмножество режима идеального газа, в котором газ можно считать химически совершенным, но вращательную и колебательную температуры газа следует рассматривать отдельно, что приводит к двум температурным моделям. См., В частности, моделирование сверхзвуковых сопел, где становится важным вибрационное замораживание.
Диссоциированный газ
В этом режиме двухатомные или многоатомные газы (газы, присутствующие в большинстве атмосфер) начинают диссоциировать, когда они вступают в контакт с головной ударной волной, создаваемой телом. Катализ поверхности играет роль в расчете нагрева поверхности, а это означает, что тип материала поверхности также влияет на поток. На нижней границе этого режима любой компонент газовой смеси сначала начинает диссоциировать в точке торможения потока (которая для азота составляет около 2000 K). На верхней границе этого режима эффекты ионизации начинают сказываться на потоке.
Ионизированный газ
В этом режиме заселенность ионизированных электронов застойного потока становится значительной, и электроны необходимо моделировать отдельно. Часто с температурой электронов обращаются отдельно от температуры остальных компонентов газа. Эта область встречается при скоростях набегающего потока около 3-4 км / с. Газы в этой области моделируются как неизлучающая плазма .
Режим с преобладанием излучения
При скорости выше 12 км / с передача тепла транспортному средству меняется с преобладающей кондуктивной на радиационную. Моделирование газов в этом режиме делится на два класса:
- Оптически тонкий : газ не поглощает повторно излучение, исходящее от других частей газа.
- Оптически толстый: излучение следует рассматривать как отдельный источник энергии.
Моделирование оптически толстых газов чрезвычайно сложно, поскольку из-за расчета излучения в каждой точке вычислительная нагрузка теоретически увеличивается экспоненциально по мере увеличения количества рассматриваемых точек.
Классификация режимов Маха [ править ]
Хотя «дозвуковой» и «сверхзвуковой» обычно обозначают скорости ниже и выше местной скорости звука соответственно, аэродинамики часто используют эти термины для обозначения определенных диапазонов значений Маха. Это происходит потому, что около M = 1 существует околозвуковой режим», в котором приближения уравнений Навье – Стокса, используемых для дозвукового расчета, больше не применяются, отчасти потому, что поток локально превышает M = 1, даже когда набегающий поток требуется пояснение число Маха ниже это значение.
«Сверхзвуковой режим» обычно относится к набору чисел Маха, для которого может использоваться линеаризованная теория; например, там, где ( воздушный ) поток не вступает в химическую реакцию и где теплопередача между воздухом и транспортным средством может разумно не учитываться в расчетах. Обычно НАСА определяет «высокий» гиперзвуковой как любое число Маха от 10 до 25, а скорость входа в атмосферу — как любое число, превышающее 25 Маха. Среди самолетов, работающих в этом режиме, есть Space Shuttle и (теоретически) различные развивающиеся космические самолеты .
В следующей таблице даны ссылки на «режимы» или «диапазоны значений Маха» вместо обычных значений «дозвуковой» и «сверхзвуковой».
Режим |
Скорость |
Общие характеристики самолета |
|||
---|---|---|---|---|---|
Мах Нет | миль / ч |
км / ч |
РС |
||
Дозвуковой | <0,8 |
<614 |
<988 |
<274 |
Чаще всего винтовые и коммерческие турбовентиляторные самолеты с большим удлинением (тонкими) крыльями и закругленными элементами, такими как носовая часть и передние кромки. |
Трансзвуковой | 0,8–1,2 |
614–921 |
988–1482 |
274–412 |
Трансзвуковые летательные аппараты почти всегда имеют стреловидные крылья, которые задерживают расхождение сопротивления, сверхкритические крылья для задержки начала волнового сопротивления и часто имеют конструкцию, соответствующую принципам правила площади Уиткомба . |
Сверхзвуковой | 1,2–5 |
921–3836 |
1482–6174 |
412–1715 |
Самолет рассчитан на полет на сверхзвуковых скоростях показывают большие различия в их аэродинамической конструкции из — за радикальных различий в поведении потоков жидкости выше Маха 1. Острые края, тонких аэродинамических профилей -сечений, и все движущиеся стабилизаторомутками являются общими. Современные боевые самолеты должны идти на компромисс, чтобы поддерживать управляемость на малых скоростях; «Настоящие» сверхзвуковые разработки включают истребители F-104 и BAC / Aérospatiale Concorde . |
Гиперзвуковой |
5–10 |
3836–7673 |
6174–12350 |
1715–3430 |
Охлажденная никелевая или титановая кожа; конструкция является высоко интегрированной, а не собранной из отдельных независимо разработанных компонентов, из-за преобладания эффектов интерференции, когда небольшие изменения в любом из компонентов вызывают большие изменения воздушного потока вокруг всех других компонентов, что, в свою очередь, влияет на их поведение. В результате ни один компонент не может быть спроектирован, не зная, как все другие компоненты повлияют на все воздушные потоки вокруг летательного аппарата, и любые изменения любого компонента могут потребовать перепроектирования всех других компонентов одновременно; маленькие крылья. См. Boeing X-51 Waverider , BrahMos-II , X-41 Common Aero Vehicle , DF-ZF ,Автомобиль-демонстратор гиперзвуковых технологий , ракета Шаурья . |
10–25 |
7673–19180 |
12350–30870 |
3430–8507 |
Температурный контроль становится основным соображением при проектировании. Конструкция должна быть спроектирована для работы в горячем состоянии или защищена специальной силикатной плиткой или аналогичным материалом. Химически реагирующий поток также может вызвать коррозию обшивки автомобиля, поскольку свободный атомарный кислород присутствует в очень высокоскоростных потоках. Примеры включают 53T6 (17 Махов), Hypersonic Technology Vehicle 2 (20 Махов), DF-41 (25 Махов), HGV-202F (20 Махов) Agni-V (24 Махов) и Авангард (27 Махов). Гиперзвуковые конструкции часто вынуждены из-за повышения аэродинамического нагрева с уменьшениемрадиус кривизны . |
|
> 25 |
> 19030 |
> 30870 |
> 8575 |
Абляционный тепловой экран; маленькие или без крыльев; тупая форма. См. Капсулу повторного входа . |
Характеристики двигателя ЗМЗ-511/513 ГАЗ-53, 3307, ГАЗ-66
Блистательные перспективы и скромные реалии линкора «Тирпиц»
Историческая справка
СУ-152 — тяжёлая советская самоходно-артиллерийская установка (САУ) времён Великой Отечественной войны, построенная на базе тяжёлого танка КВ-1с и вооружённая мощной 152-мм гаубицей-пушкой МЛ-20С. По своему боевому предназначению СУ-152 в равной степени являлась как тяжёлым истребителем танков, так и тяжёлым штурмовым орудием.
Постройка первого прототипа СУ-152 под названием Объект 236 (также КВ-14 или СУ-14) была закончена 24 января 1943 года, со следующего месяца начался её серийный выпуск. В связи со снятием с производства танка-базы КВ-1с СУ-152 в декабре 1943 года были заменены в производстве равноценной по вооружению и лучше бронированной ИСУ-152, всего было построено 670 самоходно-артиллерийских установок этого типа.
Военно-воздушные силы
Один из самых известных американских проектов на этом поприще – Air Launched Rapid Response Weapon, или ARRW (система также получила обозначение AGM-183A).
Речь идет о крайне интересной и даже революционной во многих отношениях разработке. Эксперты считают, что ARRW представляет собой твердотопливную аэробаллистическую ракету, оснащенную отделяемой гиперзвуковой боевой частью с двигателем Tactical Boost Glide. Гиперзвуковой блок, по некоторым данным, способен развивать скорость более 20 Махов. Боевая часть может быть нескольких типов, в том числе ядерной.
- AGM-183A Air Launched Rapid Response Weapon / lenta.ru
- AGM-183A / ruposters.ru
Мы могли видеть AGM-183A летом прошлого года: тогда Минобороны США показало июньские испытания с участием макета комплекса, подвешенного под стратегический бомбардировщик B-52.
Русскоязычные СМИ встретили американскую разработку традиционно прохладно. «Речь идет, судя по всему, о создании аналога нашего «Кинжала» на основе X-51 Waverider. Ракета испытывалась несколько лет назад, и тогда разработчики столкнулись с тем, что двигатель слишком рано выходил из строя – вероятно, когда ракета заходила в более плотные слои атмосферы. Если эта проблема не решена, то разработка вперед не продвинется», – заявил военный обозреватель Михаил Тимошенко.
Справедливости ради, отечественные эксперты лукавят. Ни о каком аналоге «Кинжала» речи не было: разве что баллистическая ракета AGM-183A, выступающая носителем гиперзвукового блока, внешне отдаленно напоминает российское изделие. Де-факто же «Кинжал» и ARRW – принципиально разные системы. Более того, прямого аналога Air Launched Rapid Response Weapon, судя по всему, нет ни у России, ни у Китая. Достижение начальной оперативной готовности ARRW запланировано к 2022 году.
Источники
История проекта
Навигация
Объявления о продаже ГАЗ 69
От «занедорого» до «зрелищно»
Вспомним про синий цвет. С эпохи Наполеона все знают, что это традиционный цвет французской армии. Но так было не всегда. Первоначально синий цвет полагался лишь гвардии, а армия ходила в экономичной белой форме. После того, как гвардия поддержала революцию, синий стал необычайно популярен, превратившись в символ борьбы со старым режимом. Изначально синий цвет требовал редкого красителя индиго и был очень дорог, но в 1799 году французский химик Луи Жак Тенар по заказу Севрской фарфоровой мануфактуры синтезировал дешевый кобальтовый пигмент, заменив привозимый с Востока индиго. Это и позволило одеть французскую армию в модный цветзанедорого».
Похожая история и у англичан. Их красные мундиры приняли по двум причинам: во-первых, Кромвель счел, что на красном сукне менее заметна кровь(меньше давления на психику), а во-вторых, тогдашний краситель,венецианский красный», оказался самым дешевым из всех. И скорее всего, финансовые вопросы преобладали над военной психологией, так что, если бы дешевым оказался желтый краситель — английская армия сейчас гордилась бы традиционными желтыми мундирами.
С развитием военной символики параллельно шло развитие абсолютизма и установление сильной централизованной власти. В результате военный мундир наполнялся идеологическим содержанием. Красочная картина марширующих войск, облаченных в нарядную форму, изобилующую помпезными аксессуарами, была захватывающим зрелищем, а его масштаб считался мерилом могущества государя. Но уже в конце XVIII века появились первые размышления о том, что военная форма — это не столько эстетика могущества государства, сколько рабочая одежда. Впрочем, об этом мы расскажем в следующий раз. А пока можете посмотреть на самую странную — хотя, чего уж там, самую идиотскую военную форму разных стран.
Литература
Характеристики потока
В то время как определение гиперзвукового потока (ГП) достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:
- тонкий слой ударной волны;
- образование вязких ударных слоев;
- появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам;
- высокотемпературный поток.
Тонкий слой ударной волны
По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны (УВ) также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой (ПС) вокруг аппарата.
Образование вязких ударных слоев
Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 (вязкое течение) преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры. Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.
Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам
В важной проблеме перехода ламинарного течения в турбулентное для случая обтекания летательного аппарата ключевую роль играют волны неустойчивости, образующиеся в ПС. Рост и последующее нелинейное взаимодействие таких волн преобразует изначально ламинарный поток в турбулентное течение
На до- и сверхзвуковых скоростях ключевую роль в ламинарно-турбулентном переходе играют волны Толмина-Шлихтинга, имеющие вихревую природу. Начиная с М = 4,5 в ПС появляются и начинают доминировать волны акустического типа (II мода или мэкавская мода), благодаря которым происходит переход в турбулентность при классическом сценарии перехода (существует также by-pass механизм перехода).
Высокотемпературный поток
Высокоскоростной поток в лобовой точке аппарата (точке или области торможения) вызывает нагревание газа до очень высоких температур (до нескольких тысяч градусов). Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена.
Имперские легионы
Почему преодоление самолетом звукового барьера сопровождается взрывоподобным хлопком? И что такое «звуковой барьер»?
Подробнее: Звуковой барьер исверхзвуковой полёт
С «хлопком» происходит недоразумение, вызванное неверным пониманием термина «звуковой барьер». Этот «хлопок» правильно называть «звуковым ударом».
Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления.
Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими,
направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли…
Подробнее: Звуковой барьер и сверхзвуковой полёт
Когда граница этого воображаемого конуса, обозначающая фронт ударной звуковой волны, достигает уха человека(с точки А), то резкий скачок давления воспринимается на слух как хлопок.
Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии, что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель…
Подробнее: Звуковой барьер и сверхзвуковой полёт
Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии. Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует «преодоление» своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается «аэродинамический удар» и характерные «скачки» в управляемости. Вот только с «хлопками» на земле эти процессы напрямую не связаны…
Перед тем, как самолет преодолеет звуковой барьер, может образоваться необычное облако(туман), происхождение которого до сих пор не ясно. Согласно наиболее популярной гипотезе, рядом с самолетом происходит падение давления и возникает так называемая сингулярность Прандтля-Глауэрта с последующей конденсацией капелек воды из влажного воздуха, а именно возникновение облака (тумана) связано лишь с резким перепадом давления, сопровождающим полёт самолёта. В результате аэродинамических эффектов за элементами конструкции самолёта образуются не только области повышенного давления, но и области разрежения воздуха (возникают колебания давления). Именно в этих областях разрежения (протекающего, фактически, без теплообмена с окружающей средой, так как процесс “очень быстрый”) и конденсируется водяной пар. Причиной этому служит резкое падение “локальной температуры”, приводящее к резкому смещению так называемой “точки росы”…. Читать подробнее: Звуковой барьер и сверхзвуковой полёт – dxdt.ru
Подробнее: Звуковой барьери сверхзвуковой полёт
Так что, если влажность воздуха и температура подходят, то такой туман – вызванный интенсивной конденсацией атмосферной влаги – сопровождает весь полёт самолёта.
И не обязательно на сверхзвуковой скорости. Например, на фотографии, бомбардировщик B-2, а это дозвуковой самолёт, сопровождается характерной дымкой…Читать подробнее:
Собственно, конденсат вы видите и на фотках внизу:
Почему при преодолении звукового барьера слышится хлопок
Ударная волна, вызванная летательным аппаратом
Фото №1 ударных волн при обтекании модели сверхзвуковым потоком в аэродинамической трубе (Аэродинамическая лаборатория NASA)
NASA удалось получить фото ударной волны при преодолении самолётом звукового барьера
Подробнее: Распространениеударной волны, вызваннойсверхзвуковым самолётом
Жёлтая зона — след ударной волны на земле.
Снаружи конуса ударной волны(Маха), а на земле — перед жёлтой зоной самолёт не слышен.Распространение ударной волны, вызванной сверхзвуковым самолётом (источник). При обтекании сверхзвуковым воздушным потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела).
На фото №1 слева видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели…
Виды скачков уплотнения при сверхзвуковом обтеканиител различной формы
Кроме того скачки уплотнения могут быть также присоединенными, когда они примыкают к поверхности тела, двигающегося со сверхзвуковой скоростью или же отошедшими, если они с телом не соприкасаются.Обычно скачки становятся присоединенными, если сверхзвуковой поток обтекает какие-либо остроконечные поверхности.Для самолета это, например, может быть заостренная носовая часть, ПВД, острый край воздухозаборника. При этом говорят «скачок садится», например, на нос(вид а и в).А отошедший скачок может получиться при обтекании закругленных поверхностей, например, передней закругленной кромки толстого аэродинамического профиля крыла(вид б).Различные узлы корпуса летательного аппарата создают в полете довольно сложную систему скачков уплотнения…
Подробнее: Звуковой барьер и сверхзвуковой полёт
Однако, наиболее интенсивные из них – два. Один головной на носовой части и второй – хвостовой на элементах хвостового оперения.
На некотором расстоянии от летательного аппарата промежуточные скачки либо догоняют головной и сливаются с ним, либо их догоняет хвостовой.
В итоге остаются два скачка, которые, в общем-то, воспринимаются земным наблюдателем как один из-за небольших размеров самолета по сравнению с высотой полета и небольшим промежутком времени между ними…
Интенсивность ( другими словами энергетика) ударной волны (скачка уплотнения) зависит от различных параметров(скорости движения летательного аппарата, его конструктивных особенностей, условий среды и др.) и определяется перепадом давления на ее фронте.По мере удаления от вершины конуса Маха, то есть от самолета, как источника возмущений ударная волна ослабевает, постепенно переходит в обычную звуковую волну и в конечном итоге совсем исчезает…
На фронте-конуса Маха ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли миллиметра), почти скачкообразно происходят кардинальные изменения свойств потока — его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока… При гиперзвуковых скоростях (число Маха=5 и выше) температура газа достигает нескольких тысяч кельвинов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта). Фронт ударной волны по мере удаления от аппарата постепенно принимает почти правильную коническую форму, перепад давления на нём уменьшается с увеличением расстояния от вершины конуса, и ударная волна превращается в звуковую…
Подробнее читать Звуковой барьер. О нем и вещах, ему сопутствующих…
Описание двигателя ГАЗ-53
Прообразом силовой установки ГАЗ-53 стал двигатель ГАЗ-51, который доработали, установив дополнительные камеры, а так же увеличили мощь. Мотор получил остов, отлитый из сплава алюминия (АЛ-4). Характерно, что изделие стало первым в двигателестроении блоком, который изготовили, отливая материал под напором. Применяемая технология получилась удачной, деталь стала легче, сбросив 20кг и компактней на 45мм.
Тяговая установка ГАЗ-53, это двигатель, выполняющий четыре такта за цикл, с компоновкой «V». В развале остова камер изделия расположен распределительный вал, за активацию клапанов отвечают штанги. Объём двигателя ГАЗ 53 составляет 4,254 литра, чего хватает для образования импульса вращения на уровне 290 Нм при 2000-2500 мин-1. Поскольку значение мощи ограничено, то показатель не превышает 115 лошадей. Значение компрессии на уровне 6,7 единиц, даёт разрешение на эксплуатацию агрегата с использованием А-76 бензина.
Характерно, что за время выпуска ГАЗ 53 двигатель характеристики и параметры некоторых элементов не поменялись. Так, сечение камеры и ход вытеснителя просуществовали в одном габарите: 92 на 80мм соответственно.
Для активации агрегата используется принудительная подача горючего, выполняемая посредством топливной помпы, марки «Б9Д», устройство монтируется на поддоне мотора. Мотор работает, используя диафрагму, производительность изделия 140 литров жидкости в час. За степень чистоты горючего отвечает щелевой фильтрующий элемент, оборудованный отстойником. Перед карбюратором устанавливается сетчатый фильтр, отвечающий за тонкую очистку.
Для работы мотора, используют бак с горючим, объём которого 90 литров. Топливо поступает в устройство, образующее смесь жидкости с воздухом. Изначально использовался карбюратор марки «К126Б» с двумя камерами. В конструкцию изделия включены: устройство обогащения горючей смеси на полных нагрузках мотора (механического типа), ускорительная помпа, ограничитель оборотов (пневматика). Для очистки воздушных масс применяют масляный фильтрующий элемент инерционного типа, с двумя степенями очистки, материал фильтра – капрон.
Порядок работы 8 цилиндрового двигателя ГАЗ 53 – «15426378». Что бы предотвратить трение и износ в моторе, используют комбинированную смазку, подавая жидкость одновременно с напором и разбрызгивая. Смазывающая жидкость очищается центрифугой, напор поддерживается помпой, работающей за счёт шестерёнок, забирающих масло из поддона. Охлаждение смазки происходит в радиаторе, посредством воздуха. Место крепления изделия – передняя часть мотора, перед радиатором жидкостного охлаждения. Моторы ГАЗ-53 не зависимо от модификации укомплектовывались коробкой передач с четырьмя ступенями.