Виды звёзд, существующие во вселенной

Содержание

Ядерные источники энергии и их связь со строением красных гигантов[править | править код]

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера между ядрами: два ядра гелия (альфа-частицы) могут сливаться с образованием крайне нестабильного изотопа бериллия 8Be:

4He + 4He = 8Be.

Бо́льшая часть 8Be, имеющего период полураспада всего 6,7×10−17 секунды, снова распадается на две альфа-частицы, но при столкновении 8Be с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода 12C:

8Be + 4He = 12C + 7,3 МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 К отношение концентраций 8Be/4He ~ 10−10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур T ≈ 1—2⋅108 К энерговыделение

ε3α=108ρ2Y3⋅(T108K)30,{\displaystyle \varepsilon _{3\alpha }=10^{8}\rho ^{2}Y^{3}\cdot \left({T \over {10^{8}\mathrm {K} }}\right)^{30},}

где Y — парциальная концентрация гелия в ядре (в рассматриваемом случае, когда водород почти «выгорел», она близка к единице).

Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до ~2,25 M) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (~104—105 лет) росту их светимости — гелиевой вспышке.

Тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем CNO-цикл: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (и реакций синтеза более тяжёлых ядер) с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Эволюция звезд — красный гигант

Красный гигант, а также сверхгигант – это название космических объектов с протяженными оболочками и высокой светимостью. Они относятся к поздним спектральным классам К и М. Их радиусы превосходят солнечный в сотни раз. Максимальное излучение этих звезд приходится на инфракрасную и красную области спектра. На диаграмме Герцшпрунга — Ресселла красные гиганты располагаются над линией главной последовательности, их абсолютная звездная величина колеблется в пределах чуть выше нуля или имеет отрицательное значение.

Площадь такой звезды превосходит площадь Солнца минимум в 1500 раз, а при этом ее диаметр приблизительно в 40 раз больше. Так как разница в абсолютной величине с нашим светилом составляет около пяти, выходит, что красный гигант излучает в сто раз больше света. Но при этом он значительно холоднее. Солнечная температура вдвое превосходит показатели красного гиганта, и поэтому на единицу площади поверхности светило нашей системы излучает света в шестнадцать раз больше.

Видимый цвет звезды напрямую зависит от температуры поверхности. Наше Солнце раскаляется добела и имеет сравнительно небольшие размеры, поэтому его называют желтым карликом. Более холодные звезды имеют оранжевый и красный свет. Каждая звезда в процессе своей эволюции может достигнуть последних спектральных классов и стать красным гигантом на двух этапах развития. Это происходит в процессе зарождения на стадии звездообразования или же на завершающей ступени эволюции. В это время красный гигант начинает излучать энергию за счет собственной гравитационной энергии, которая выделяется при его сжатии.

По мере того как сжимается звезда, температура ее возрастает. При этом, вследствие сокращения размеров поверхности, в разы падает светимость звезды. Она затухает. Если это «молодой» красный гигант, то в конечном итоге в его недрах запустится реакция термоядерного синтеза из водорода гелия. После чего молодая звезда выйдет на главную последовательность. У старых звезд иная судьба. На поздних этапах эволюции водород в недрах светила выгорает полностью. После чего звезда сходит с главной последовательности. По диаграмме Герцшпрунга — Рассела она передвигается в область сверхгигантов и красных гигантов. Но перед тем как перейти на эту стадию, она проходит промежуточный этап – субгиганта.

Субгигантами называют звезды, в ядре которых уже прекратились водородные термоядерные реакции, но при этом горение гелия еще не началось. Это происходит, потому что ядро недостаточно разогрелось. Примером такого субгиганта может быть Артур, расположенный в созвездии Волопаса. Он является оранжевой з

вездой с видимой величиной -0,1. Он находится на расстоянии от Солнца примерно в 36 — 38 световых лет. Наблюдать его можно в Северном полушарии в мае, если глядеть прямо на юг. Диаметр Артура в 40 раз больше солнечного.

Желтый карлик Солнце является сравнительно молодой звездой. Ее возраст оценивается в 4,57 миллиарда лет. На главной последовательности оно будет оставаться еще приблизительно 5 миллиардов лет. Но ученым удалось смоделировать мир, в котором Солнце — красный гигант. Размеры его вырастут в 200 раз и достигнут орбиты Земли, испепелив Меркурий и Венеру. Конечно, жизнь к этому времени будет уже невозможной. На этой стадии Солнце просуществует приблизительно еще 100 миллионов лет, после чего оно превратится в планетную туманность и станет белым карликом.

Ядерные источники энергии и их связь со строением красных гигантов

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108 K кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be8:

He4 + He4 = Be8

Большая часть Be8 снова распадается на две альфа-частицы, но при столкновении Be8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C12:

Be8 + He4 = C12 + 7,3 МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 K отношение концентраций / ~10-10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур T ~1—2·108 K энерговыделение \varepsilon _{3\alpha } :

\varepsilon _{3\alpha } = 10^8 \rho ^2 Y^3 *\left( {{T \over {10^8 }}} \right)^{30}

где Y — парциальная концентрация гелия в ядре (в рассматриваемом случае «выгорания» водорода близка к единице).

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.

Дополнительным фактором, по видимому влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (см. Рис. 3) и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринное охлаждение, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро (Рис. 1).

Литература

Ядерные источники энергии и их связь со строением красных гигантов

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера между ядрами: два ядра гелия (альфа-частицы) могут сливаться с образованием крайне нестабильного изотопа бериллия 8Be:

4He + 4He = 8Be.

Бо́льшая часть 8Be, имеющего период полураспада всего 6,7×10−17 секунды, снова распадается на две альфа-частицы, но при столкновении 8Be с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода 12C:

8Be + 4He = 12C + 7,3 МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 К отношение концентраций 8Be/4He ~ 10−10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур T ≈ 1—2⋅108 К энерговыделение

ε3α=108ρ2Y3⋅(T108K)30,{\displaystyle \varepsilon _{3\alpha }=10^{8}\rho ^{2}Y^{3}\cdot \left({T \over {10^{8}\mathrm {K} }}\right)^{30},}

где Y — парциальная концентрация гелия в ядре (в рассматриваемом случае, когда водород почти «выгорел», она близка к единице).

Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до ~2,25 M) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (~104—105 лет) росту их светимости — гелиевой вспышке.

Тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем CNO-цикл: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (и реакций синтеза более тяжёлых ядер) с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Примечания

Комментарии
  1. Часто употребляемое выражение. Не имеет прямого отношения к возрасту, а определяет лишь место в ряду спектральных классов.
Источники
  1. Zeilik, Michael A.; Gregory, Stephan A. Introductory Astronomy & Astrophysics (англ.). — 4th Ed.. — Saunders College Publishing (англ.)русск., 1998. — P. 321—322. — ISBN 0-03-006228-4.
  2. . HyperPhysics (hosted by the Department of Physics and Astronomy of Georgia State University). Дата обращения: 29 декабря 2006.
  3. Strobel, Nick . Lives and Deaths of Stars (2 июня 2004). Дата обращения: 29 декабря 2006.
  4. . Дата обращения: 29 декабря 2006.
  5. , p. 142
  6. , p. 114
  7. Леонид Попов. . Membrana.ru. Дата обращения: 5 марта 2013.

Обнаружение

Наиболее яркие звёзды в шаровых скоплениях, таких как NGC 288, являются красными гигантами

Красные гиганты были открыты в начале XX-го века, когда при анализе диаграммы Герцшпрунга—Рессела были обнаружены два типа популяций холодных звёзд различного размера: карлики, находящиеся на главной последовательности, и звёзды-гиганты.

Название ветвь красных гигантов начало использоваться с 1940-1950-х годов, изначально в виде названия для области красных гигантов на диаграмме Герцшпрунга—Рессела. Хотя основы термоядерного синтеза в звёздах на главной последовательности были известны уже в 1940-х годах, но подробности внутреннего строения различных типов звёзд-гигантов ещё не были изучены.

В 1968 году название асимптотическая ветвь гигантов использовалось для ветви звёзд, светимость которых превышает светимость большинства красных гигантов, менее устойчивых и зачастую переменных с большим периодом переменности. Наблюдения раздвоенной ветви гигантов проводились и до этого, но связь разных частей была не ясна. К 1970 году было известно, что область красных гигантов состоит из области субгигантов, ветви красных гигантов, горизонтальной ветви и асимптотической ветви гигантов, а также был исследован эволюционный статус звёзд в данных областях. Ветвь красных гигантов была описана в 1967 году как первая ветвь гигантов, второй ветвью является асимптотическая ветвь гигантов, данные термины употребляются и в настоящее время.

В современной звёздной физике создаются модели протекающих в недрах звёзд процессов, соответствующих различным стадиям жизни звезды средней массы после главной последовательности, точность и сложность моделей увеличивается со временем. Результаты исследования ветви красных гигантов используются в том числе как основа для исследований в других областях.

Наблюдаемые характеристики

К красным гигантам относят звёзды спектральных классов K и M класса светимости III, то есть с абсолютной звёздной величиной m≥MV≥−3m{\displaystyle 0^{m}\geq M_{V}\geq -3^{m}}. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (Tph ≈ 3000—5000 K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако полная светимость таких звёзд может достигать 105—106L, так как красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

Солнце как красный гигант

Жизненный цикл Солнца

В настоящее время Солнце является звездой среднего возраста, возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся превращение гелия в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.). Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. По наиболее вероятному сценарию орбита Земли будет находиться чуть дальше внешних оболочек Солнца и непосредственно расширением не будет задета, но из-за приливного воздействия постепенно (в течение 108 лет) будет приближаться к Солнцу и в итоге всё равно будет поглощена им. Но даже если из-за постепенной потери массы Солнцем в результате излучения и солнечного ветра Земля перейдёт на более высокую орбиту, то будет разогрета настолько, что никаких шансов на сохранение жизни не останется. Океаны Земли испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет, как из-за постепенного увеличения яркости Солнца, так и по причине .

На стадии красного гиганта Солнце будет находиться приблизительно 108 лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысяч лет, а белый карлик будет остывать в течение 1010 — 1020 лет.

Солнце как красный гигант

Жизненный цикл Солнца

В настоящее время Солнце является звездой среднего возраста, возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся превращение гелия в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.). Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. По наиболее вероятному сценарию орбита Земли будет находиться чуть дальше внешних оболочек Солнца и непосредственно расширением не будет задета, но из-за приливного воздействия постепенно (в течение 108 лет) будет приближаться к Солнцу и в итоге всё равно будет поглощена им. Но даже если из-за постепенной потери массы Солнцем в результате излучения и солнечного ветра Земля перейдёт на более высокую орбиту, то будет разогрета настолько, что никаких шансов на сохранение жизни не останется. Океаны Земли испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет, как из-за постепенного увеличения яркости Солнца, так и по причине .

На стадии красного гиганта Солнце будет находиться приблизительно 108 лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысяч лет, а белый карлик будет остывать в течение 1010 — 1020 лет.

Классическая форма клинка ножа (Прямой обух, Normal Blade, Финка)

Ядерные источники энергии и их связь со строением красных гигантов

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия в pp-цикле и (для массивных звёзд) в CNO-цикле. Такое выгорание приводит к накоплению в центральных частях звезды гелия, который при сравнительно низких температурах и давлениях ещё не может вступать в термоядерные реакции. Прекращение энерговыделения в ядре звезды ведёт к сжатию и, соответственно, к повышению температуры и плотности ядра. Рост температуры и плотности в звёздном ядре приводит к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера между ядрами: два ядра гелия (альфа-частицы) могут сливаться с образованием крайне нестабильного изотопа бериллия 8Be:

4He + 4He = 8Be.

Бо́льшая часть 8Be, имеющего период полураспада всего 6,7×10−17 секунды, снова распадается на две альфа-частицы, но при столкновении 8Be с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода 12C:

8Be + 4He = 12C + 7,3 МэВ.

Несмотря на весьма низкую равновесную концентрацию Be8 (например, при температуре ~108 К отношение концентраций 8Be/4He ~ 10−10), скорость тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока: так, для диапазона температур T ≈ 1—2·108 К энерговыделение

ε3α=108ρ2Y3⋅(T108K)30,{\displaystyle \varepsilon _{3\alpha }=10^{8}\rho ^{2}Y^{3}\cdot \left({T \over {10^{8}\mathrm {K} }}\right)^{30},}

где Y — парциальная концентрация гелия в ядре (в рассматриваемом случае, когда водород почти «выгорел», она близка к единице).

Начало тройной гелиевой реакции в вырожденных ядрах маломассивных (масса до ~2,25 M) красных гигантов имеет взрывоподобный характер, что приводит к резкому, но очень кратковременному (~104—105 лет) росту их светимости — гелиевой вспышке.

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем CNO-цикл: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции (и реакций синтеза более тяжёлых ядер) с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Наблюдаемые характеристики

Эволюционные треки звёзд различных масс при образовании красных гигантов на диаграмме Герцшпрунга — Рассела

К красным гигантам относят звёзды спектральных классов K и M класса светимости III, то есть с абсолютной звёздной величиной m≥MV≥−3m{\displaystyle 0^{m}\geq M_{V}\geq -3^{m}}. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (Tph ≈ 3000—5000 K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако полная светимость таких звёзд может достигать 105—106L, так как красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

Наблюдаемые характеристики

К красным гигантам относят звёзды спектральных классов K и M класса светимости III, то есть с абсолютной звёздной величиной m≥MV≥−3m{\displaystyle 0^{m}\geq M_{V}\geq -3^{m}}. Температура излучающей поверхности (фотосферы) красных гигантов сравнительно невелика (Tph ≈ 3000—5000 K) и, соответственно, поток энергии с единицы излучающей площади невелик — в 2—10 раз меньше, чем у Солнца. Однако полная светимость таких звёзд может достигать 105—106L, так как красные гиганты и сверхгиганты имеют очень большие размеры и, соответственно, площади поверхности. Характерный радиус красных гигантов — от 100 до 800 солнечных радиусов, что соответствует площади поверхности в 104—106 раз больше солнечной. Так как температура фотосферы красного гиганта близка к температуре спирали лампы накаливания (≈3000 К), красные гиганты, вопреки своему названию, аналогично лампам, испускают свет не красного, а скорее охристо-желтоватого оттенка.

Спектры красных гигантов характеризуются наличием молекулярных полос поглощения, поскольку в их относительно холодной фотосфере некоторые молекулы оказываются устойчивыми. Максимум излучения приходится на красную и инфракрасную области спектра.

Ссылки

Солнце как красный гигант[править | править код]

Жизненный цикл Солнца

В настоящее время Солнце является звездой среднего возраста, возраст Солнца оценивается приблизительно в 4,57 миллиарда лет. Солнце будет оставаться на главной последовательности ещё приблизительно 5 миллиардов лет, постепенно увеличивая свою яркость на 10 % каждый миллиард лет, после чего водород в ядре будет исчерпан.

После этого температура и плотность в солнечном ядре повысятся настолько, что начнётся превращение гелия в углерод. Размеры Солнца вырастут как минимум в 200 раз, то есть почти до современной земной орбиты (0,93 а.е.). Меркурий и Венера, несмотря на сильную потерю массы Солнца к моменту перехода на стадию красного гиганта, будут им поглощены и полностью испарятся. По наиболее вероятному сценарию орбита Земли будет находиться чуть дальше внешних оболочек Солнца и непосредственно расширением не будет задета, но из-за приливного воздействия постепенно (в течение 108 лет) будет приближаться к Солнцу и в итоге всё равно будет поглощена им. Но даже если из-за постепенной потери массы Солнцем в результате излучения и солнечного ветра Земля перейдёт на более высокую орбиту, то будет разогрета настолько, что никаких шансов на сохранение жизни не останется. Океаны Земли испарятся задолго до перехода Солнца на стадию красного гиганта, приблизительно через 1,1 миллиарда лет, как из-за постепенного увеличения яркости Солнца, так и по причине .

На стадии красного гиганта Солнце будет находиться приблизительно 108 лет, после чего превратится в планетарную туманность с белым карликом в центре; планетарная туманность рассеется в межзвёздной среде в течение нескольких тысяч лет, а белый карлик будет остывать в течение 1010 — 1020 лет.

Кинжал «басселард»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector