Виды радиоактивных излучений и их опасность

Содержание

Как обезопасить себя от излишних доз радиации?

От внешних источников защититься проще. Альфа-частицы задержит обычный картонный лист. Бета-излучение не проникает сквозь стекло. «Прикрыть» от гамма-лучей сможет толстый свинцовый лист или бетонная стена.

Хуже всего обстоит дело с внутренним облучением, при котором источник находится внутри организма, попав туда, к примеру, после вдыхания радиоактивной пыли или ужина с «приправленными» цезием грибочками. В этом случае последствия облучения намного более серьезные.

Самая лучшая защита от бытового ионизирующего излучения – своевременное обнаружение его источников. В этом вам помогут бытовые дозиметры RADEX. С такими приборами под рукой жить гораздо спокойнее: в любой момент вы исследуете на радиационное загрязнение все что угодно.

Контролируйте индикатором радиоактивности свою пищу, проверяйте воду и воздух, которым дышите, и вы создадите надежную преграду для проникновения внутрь микроскопических вредоносных частиц.

Естественные источники

Основную часть облучения ионизирующим излучением население земного шара получает, как правило, от естественных источников ионизирующего излучения (естественные ИИИ). На протяжении всего времени существования Земли разные виды излучения попадают на Землю из Космоса (космические лучи, КЛ), а также поступают от естественных радионуклидов (ЕРН), которые находятся в атмосфере, гидросфере, в земной коре и совершают свой кругооборот в процессе естественной эволюции биосферы, а также в результате преобразующей ее деятельности человека. В их числе 3H, 14C, 32P, 40K, 222Rn, 226Ra, 232Th, 235U, 238U. Некоторые из ЕРН образуются под действием космических лучей, и поэтому называются  космогенными (например, тритий, 3H, радиоуглерод, 14С, радиофосфор, 32P). Их концентрация в приповерхностном слое планеты поддерживается постоянным потоком КЛ. Ионизирующее излучение, создаваемое КЛ и естественными ИИИ, образует т.н. естественный радиационный фон (ЕРФ).

Уровень ЕРФ различен в разных районах Земли и колеблется в широких пределах от 2 — 4 мЗв в год (равнинные территории вдали от месторождений редкоземельных руд), до 440 мЗв в год (черные пески на некоторых пляжах в Бразилии, Индии и Китая, содержащие много тория-232 и радия-226, радоновые источники и т.п.). Организм аборигенов, живущих в этих местах, давно приспособился к повышенным уровням ЕРФ. Жителям других мест Земли в такие районы приезжать на длительное время не стоит.

По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.

Облучение может быть внутренним и внешним. Если источники ионизирующего излучения находятся вне организма и облучают его извне, то в этом случае, говорят о внешнем облучении. Если же ИИИ попали в организм человека (через воздух, воду, еду), то говорят о внутреннем облучении.

Перед тем как попасть в организм человека, радиоактивные вещества проходят сложный путь в окружающей среде, и это необходимо учитывать при оценке доз облучения, полученных от того или иного источника.

Внутреннее облучение в среднем составляет 2/3 эффективной дозы облучения, которую человек получает от естественного ионизирующего излучения. Оно поступает от радиоактивных веществ, которые попали в организм с едой, водой или воздухом. Небольшая часть этой дозы приходится на радиоактивные изотопы, которые образуются под воздействием космических лучей (в основном, углерод-14, тритий). Остальная часть облучения поступает от источников земного происхождения. В среднем человек получает около 180 мкЗв/год за счет калия-40, который усваивается организмом вместе с нерадиоактивным изотопом калия, играющим важную роль для жизнедеятельности человека. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшем количестве от радионуклидов ряда тория-232. Среди них одними из наиболее важных являются изотопы радона, образующиеся в результате распада изотопов радия, которые являются одними из долгоживущих членов радиоактивных рядов урана и тория. Радон – это газ без запаха и цвета, который может накапливаться в помещениях и, тем самым, быть очень опасным для людей. Его вклад в среднем является преобладающим среди всех источников излучения природного происхождения.

Люди также могут столкнуться с воздействием излучения от радионуклидов, находящихся в земной коре, при добыче нефти и газа, где они выступают в качестве естественно появляющегося радиоактивного материала (сокращенно — NORM от Naturally Occurring Radioactive Material, англ.). При добыче полезных ископаемых радон или радий могут скапливаться в трубопроводах, либо загрязнять поверхности, что представляет серьезную опасность для людей. Количественный вклад в дозу облучения от радионуклидов, имеющихся в земной коре, сильно варьируется в мире зависимости от местности из-за различий в содержании урана и тория в почвах. Уровень естественного радиационного фона в мире колеблется от 2 до 4 мЗв в год.

Вклад естественного радиационного фона в годовую дозу облучения человека составляет до 85%. Вклад испытаний ядерного оружия и аварии на ядерных объектах составляют только 1% дозы облучения от всех искусственных источников излучения.

Рядом расположены достопримечательности

Совместимое оборудование

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.

Штурмовые винтовки Израиля

Жертвы

Действие ионизирующей радиации

Под ионизирующим излучением понимают разновидность энергии, которую высвобождают атомы. Эта энергия представляет собой электромагнитные волны двух видов:

  • гамма-излучение;
  • рентгеновское излучение;
  • частицы (в виде альфа-, бета-частиц и нейтронов).

Собственно, радиоактивность — не что иное как результат спонтанного распада атомов. При распаде атомов всегда возникает избыток энергии или форма ионизирующего излучения. Уже упоминалось о нестабильности атомного ядра. Те его элементы, которые являются нестабильными, возникают при ядерном распаде и обладают ионизирующим излучением, получили название радионуклидов. В свою очередь, радионуклиды принято идентифицировать на основании типа излучения, испускаемого ими, его энергии и периода полураспада.

Ежедневно мы подвергаемся как естественному, так и искусственному радиационному излучению. Под естественными источниками следует понимать больше 60 веществ, средой обитания для которых служат почва, воздух и вода. Например, образование газа радона в естественных условиях происходит в горных породах. Каждый день мы получаем определённое количество радионуклидов, которые находятся в пище, воде и воздухе.

Если человек находится на слишком большой высоте, на него начинают воздействовать космические лучи. В целом, около 80% дозы радиации, получаемой нами каждый год — это фоновое излучение в виде наземных и космических источников. Уровни радиации в них различны. Иногда они могут составлять в 100 или 200 раз больше средней величины.

Кроме естественных источников ионизирующего излучения, на нас могут воздействовать и источники искусственного происхождения. Прежде всего, это производство ядерной энергии на атомных электростанциях. Медицинская аппаратура, применяемая в диагностических и лечебных целях, тоже является искусственным радиационным источником.

Степень повреждения живого организма радиационным воздействием определяется полученной дозой облучения либо поглощённой дозой. Её выражают в единицах, называемых греями (Гр). Что касается эффективной дозы, применяемой с целью измерения показателей излучения и уровня его вреда, её измеряют в зивертах (Зв). При этом учитывают тип радиационного воздействия и степень чувствительности того или иного органа либо ткани. Измерение уровня радиации в зивертах помогает определить, насколько серьёзным будет нанесённый ею урон.

Зиверт — большая единица, поэтому в целях измерения часто применяют милли- и микрозиверты. Кроме основного показателя радиации (её дозы), с помощью зивертов обозначают и скорость, с которой эта доза выделяется в окружающую среду (к примеру, микрозиверты в час или год).

Различают:

  • внутреннее воздействие излучения;
  • внешнее воздействие излучения.

Внутреннее воздействие происходит при вдыхании радионуклидов либо их поглощении любым путём. Например, они могут попасть в организм через рану или инъекцию. Прекращение внутреннего воздействия радионуклидов происходит при их самопроизвольном выведении из организма или в процессе лечения.

Внешнее радиационное воздействие происходит при попадании радиации из воздуха на кожные покровы или предметы одежды. Радионуклиды могут попасть через пылевые частицы, аэрозоль или любую жидкость.

Кроме того, воздействие может быть:

  • запланированным, например, в результате применения медицинского оборудования в лечебных или диагностических целях. Также к запланированному воздействию относят применение излучения в сферах промышленности и науки;
  • в результате действия уже существующих источников. Это радон, обнаруживаемый в жилых домах, либо фоновое излучение. В таких случаях необходимо принимать соответствующие контрольные меры.

И, наконец, последний тип воздействия — при чрезвычайной ситуации, возникшей в результате непредвиденного события. Такие ситуации требуют безотлагательных и экстренных мероприятий, так как речь может идти о ядерном ЧП либо намеренном действии злоумышленников.

Термины и определения

Радиация или ионизирующее излучение — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад — это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада — статистическая вероятность распада атома за единицу времени.

Период полураспада — промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы — это изменение дозы за единицу времени.

Возможные проблемы при выгонке луковичных:

Качественное улучшение

Комментируя первый полёт своего детища, главный конструктор объединённой дирекции программ Ил-76 Андрей Юрасов подчеркнул, что целью модернизации была замена комплектующих, которые больше не производятся российской промышленностью.

По словам конструктора, эта работа была успешно завершена. По её итогам Ил-76МД-М с новыми агрегатами и системами способен выполнять все возложенные на него задачи на более высоком уровне. В частности, Юрасов отметил «повышение точности самолётовождения, улучшение качества радиосвязи».

  • Военно-транспортный самолёт ВКС РФ Ил-76МД-М

В свою очередь, лётчик-испытатель Николай Куимов рассказал, что модернизированный образец «великолепно летает и показывает всё то лучшее, что воплотил в себя проект Ил-76».

«На самолёте установлено много нового оборудования, новый навигационный комплекс, новые системы, которые позволяют качественно улучшить характеристики самолёта при выполнении как транспортных, так и боевых полётов при непосредственном обеспечении перевозок войск и военной техники», — пояснил Куимов.

Прежде всего модернизации подверглись пилотажно-навигационная аппаратура самолёта, системы связи, десантно-транспортное, светотехническое и бытовое оборудование.

Одним из главных отличий Ил-76МД-М от предшественников стали элементы так называемой стеклянной кабины, в которой средства управления выполнены с использованием ЖК-дисплеев.

Также по теме

«Повышает ударную мощь авиации в несколько раз»: первый серийный истребитель Су-57 передан в авиационный полк ЮВО

Первый серийный истребитель пятого поколения Су-57 передан в один из авиаполков Южного военного округа. Ожидается, что до конца года…

Известно, что в носовой части кабины модернизированного самолёта установлена оптико-электронная визирная система, позволяющая наблюдать за площадками десантирования и любыми объектами в инфракрасном и оптическом диапазонах.

Также специалисты ПАО «Ил» оснастили Ил-76МД-М спутниковой системой навигации, удовлетворяющей всем требованиям полётов на российских и зарубежных воздушных трассах.

По словам Юрасова, Ил-76МД-М получил современный комплекс обороны, обеспечивающий «защиту от всех средств поражения, которые сейчас имеет на вооружении наш вероятный противник».

Как полагают эксперты, на машине установлена система «Витебск» (экспортное наименование — «Президент-С». — RT), предназначенная для защиты летательных аппаратов от поражения зенитными ракетами и боеприпасами с инфракрасными головками самонаведения.

В «Ростехе» «Витебск» назвали высокоэффективным средством бортовой обороны. Благодаря аппаратуре обнаружения лазерного облучения комплекс способен фиксировать исходящую от противника угрозу. Защиту от поражения машины непосредственно обеспечивают устройства выброса ложных тепловых целей и станция оптико-электронного подавления.

В целом, как отмечают в госкорпорации, радиотехническая начинка Ил-76МД-М идентична оборудованию, установленному на самолётах нового поколения Ил-76МД-90А.

Напомним, что первый экземпляр Ил-76МД-90А был собран в 2011 году. Этот тяжёлый военно-транспортный самолёт оснащён автоматизированными погрузочными системами и вспомогательной силовой установкой ТА-12А повышенной мощности.

Модернизация позволила увеличить грузоподъёмность электротельферов машины и упростить процесс погрузки и крепления грузов. Также конструкторы повысили уровень информационного обеспечения экипажа за счёт монтажа в разных частях кабины многофункциональных экранов, заменивших аналоговую аппаратуру.

«Всего в самолёте имеется девять таких экранов. Шесть в кабине лётчиков, два — у штурмана, один — у борттехника. Каждый из членов экипажа может выводить ту информацию, которая необходима ему в данный момент. Один такой экран заменяет не менее десятка аналоговых приборов», — рассказал ранее в интервью телеканалу «Звезда» Андрей Юрасов.

Методы и приборы контроля.

Какими приборами можно измерить радиацию?
: Основные приборы – радиометр и дозиметр. Существуют комбинированные приборы – дозиметр-радиометр. Самые распространённые это бытовые дозиметры-радиометры: Терра-П, Припять, Сосна, Стора-Ту, Белла и др. Есть военные приборы типа ДП-5, ДП-2,ДП-3 и др.

А чем отличается радиометр от дозиметра?
Радиометр показывает мощность дозы излучения здесь теперь и сейчас. Но для оценки влияния радиации на организм важна не мощность, а именно полученная доза.
Дозиметр — это прибор, который, измеряя мощность дозы излучения, перемножает её на время воздействия радиации, подсчитывая тем самым полученную владельцем эквивалентную дозу. Бытовые дозиметры измеряют, как правило, только мощность дозы гамма-излучения (некоторые еще и бета-излучения), весовой множитель которых (коэффициент качества излучения) равны 1.
Поэтому даже при отсутствии в приборе функции дозиметра можно мощность дозы, измеренную в Р/ч поделить на 100 и умножить на время облучения, получив таким образом искомое значение дозы в Зивертах. Либо, что то же самое, умножив измеренную мощность дозы на время облучения, получим эквивалентную дозу в бэрах.
Простая аналогия — спидометр в машине показывает мгновенную скорость «радиометр» а счетчик километров интегрирует эту скорость по времени, показывая пройденный машиной путь («дозиметр»).

Значение слова Флот по словарю Даля:

Защищает ли свинец от радиации

Считается, что свинец является чуть ли не единственным способом защититься от радиации. Что-то правдивое в этом утверждении есть, но полностью правдой считать это нельзя сразу по нескольким причинам.

В первую очередь надо понимать, что есть разные типы излучения. При разных типах радиации испускаются разные частицы, и не все они способны задерживаться свинцом. Есть те, для которых свинец просто бесполезен, а есть и те, для которых просто не нужен.

Например, альфа-излучение (ядра атомов гелия-4) очень эффективно задерживаются буквально тонкими тканями. То есть вам достаточно быть в одежде и очках. В этом случае излучение уже не доберется до вашей кожи или сделает это с очень слабыми значениями. Пострадать от этого вы не сможете.

Обратная ситуация с бета-излучением. Тут речь идет об электронах, которые имеют куда более низкую ионизирующую способность. При этом их проникающая способность, наоборот, намного выше. Впрочем, и тут достаточно какой-то небольшой защиты, например, фольги.

Фольга спасает от радиации, но так делать не стоит.

Есть еще и гамма-излучение. У него сравнительно небольшая ионизирующая способность, но при этом самая лучшая среди остальных типов излучения проникающая способность. Именно поэтому его считают наиболее опасным, так как от него достаточно сложно защититься. Считается, что именно от такого типа излучения и должен защищать свинец во всех его проявлениях.

Свинец действительно будет более эффективным, чем некоторые другие типы защиты. При одинаковой толщине защиты именно свинец задержит больше частиц из-за своей большей плотности, но и его нельзя считать панацеей от радиации.

В первую очередь, надо понимать, что слой свинца все равно должен быть достаточно большим, чтобы хоть как-то защитить от серьезной опасности. Именно поэтому, когда речь идет о бункерах и атомных станциях, куда проще пользоваться чуть более Толстым слоем бетона. Он и в строительстве проще, и не такой токсичный. При этом токсичность является проблемой не только на производстве, но и во время нахождения в таком бункере.

Когда радиация действительно серьезная, то надо лезть в бункер, остально не поможет.

Абрикосы

Литература

Устройство дозиметра

Работа любого дозиметра базируется на основе одних и тех же принципах работы. Базовым элементом всех дозиметров является датчик радиации. В зависимости от принципа работы, датчики радиации делятся на:

  • Ионизационные камеры — это датчики, конструкция которых состоит из различных по исполнению газонаполненных камер. Принцип работы основан на регистрации электрических возмущений, возникающих в газоразрядной камере при прохождении сквозь нее различных заряженных частиц. Применяются в основном для регистрации бета и гамма излучений. Газоразрядные датчики имеют простую конструкцию и малую стоимость. Плохо подходят для регистрации альфа излучений.

    Наиболее распространенной конструкцией газоразрядного датчика, является счетчик Гейгера-Мюллера, который применяется в большинстве бытовых и профессиональных дозиметрах.

  • Сцинтилляционные кристаллы — это кристаллы неорганического или органического происхождения. Принцип работы основан на регистрации фотонов, которые генерируются в кристалле, если сквозь него проходят заряженные частицы (электроны, протоны, нейтроны, альфа частицы). Могут применяться для регистрации всех видов радиации. Применяются в основном в поисковых приборах, так как обладают высокой чувствительностью и точностью. Имеют достаточно большие размеры и высокую стоимость.
  • Твердотельные полупроводниковые детекторы — состоят из кристаллов и полупроводникового материала. Принцип работы основан на изменении электрической проводимости материала при прохождении сквозь него заряженных частиц (электроны, протоны, нейтроны). Могут применяться для регистрации всех видов радиации. Обладают небольшой точностью, но при этом имеют маленькие размеры и низкую стоимость.

Расход газа ЗИЛ-131 на 100 км. Отзывы

Защита от радиации

Лучший способ защититься от пагубного влияния радиации – быть как можно дальше от источника излучения, там, где благоприятный радиационный фон (до 50 микрорентген в час). Но предугадать все возможные ситуации нельзя, поэтому каждый из нас должен знать, как защититься от ионизирующего излучения.

Индивидуальным средством защиты является одежда – резиновая, просвинцованная, а также противогазы и респираторы. Такими элементами должны быть обеспечены все, кто имеет потенциальный риск облучиться (работники некоторых заводов, врачи-рентгенологи и т.д.).

Существуют радиопротекторные препараты, которые нейтрализуют воздействие невысоких доз радиации (Мексамин, Индралин, Цистамин и др.). Их назначают людям, работающим в зонах с неблагоприятным радиационным фоном. Схему применения определяет врач. В случае глобальной катастрофы (взрыв бомбы или реактора) людям вблизи может помочь только противорадиационный бункер. Но таких убежищ совсем немного, да и вряд-ли туда можно успеть добраться. Но, на всякий случай, разузнайте, где поблизости такие есть.

Существует ошибочное убеждение, что применение препаратов йода помогает справиться с воздействием радиации. Это не совсем так. Употребление йода целесообразно до воздействия радиации. Это делается для того, чтобы насытить щитовидную железу этим элементом и не дать ей поглотить радиоактивный йод, которой часто используют в реакторах. А употребление йода после облучения может только ухудшить ситуацию. Поэтому принимать большие дозы йода стоит только по экстренным рекомендациям МЧС.

Правила поведения в зараженной радиацией территории

Известно, что передвигаться по Чернобыльской зоне отчуждения довольно безопасно, но это касается не всех локаций.

Есть места, в которых радиационный фон все еще во много раз выше нормы и находиться там крайне опасно.

Таких мест лучше избегать, но если это невозможно, то существует общий ряд правил, следование которым поможет уменьшить вред от радиации:

  • Необходимо прикрыть все тело одеждой и использовать респираторы. Если респираторов нет, их можно заменить марлей. Волосы так же должны быть закрыты.
  • Запрещено пробовать все, что растет на данной территории. Можно питаться только той едой, что привезена с собой из чистого региона. Это же относится и к воде из местных водоемов.
  • Желательно перед поездкой в зараженное место употреблять профилактические препараты, назначенные врачом.
  • После посещения радиационного участка нужно избавиться от всей одежды согласно нормативам.

Примечания

Применение ионизирующих излучений

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector