Разница между ядерным реактором и ядерной бомбой

Ссылки

Об атомах

Атомы состоят из различных чисел и комбинаций трех субатомных частиц: протонов, нейтронов и электронов. Протоны и нейтроны группируются вместе, образуя ядро (центральную массу) атома, в то время как электроны вращаются вокруг ядра, подобно планетам вокруг Солнца. Именно баланс и расположение этих частиц определяют стабильность атома.

Большинство элементов имеют очень стабильные атомы, которые невозможно расщепить, кроме как бомбардировкой ускорителей частиц. Для всех практических целей единственным естественным элементом, атомы которого можно легко расщепить, является Уран – тяжелый металл с самым большим атомом из всех природных элементов и необычно высоким отношением нейтронов к протонам.

Это более высокое соотношение не повышает его “расщепляемость”, но оно имеет важное значение для его способности способствовать взрыву, что делает уран-235 исключительным кандидатом на ядерное деление

Что такое атомная бомба?

Атомные бомбы выделяют энергию в результате ядерных реакций деления. Источником энергии для этого является большой нестабильный радиоактивный элемент, такой как уран или плутоний. Поскольку ядро ​​урана нестабильно, оно распадается на два меньших атома, постоянно испускающих нейтроны и энергию, чтобы стать стабильным. Когда имеется небольшое количество атомов, выделяющаяся энергия не может причинить большого вреда.

В бомбе атомы плотно упакованы с силой взрыва TNT. Следовательно, когда ядро ​​урана распадается и испускает нейтроны, они не могут выйти наружу. Они сталкиваются с другим ядром, чтобы высвободить больше нейтронов. Точно так же все ядра урана будут поражены нейтронами, и в конце нейтроны высвободятся. И это будет происходить как цепная реакция, и количество нейтронов и энергия будут выделяться в геометрической прогрессии.

Из-за плотной упаковки тротила эти выпущенные нейтроны не могут улететь. Таким образом, все ядра будут разрушаться, вызывая огромную энергию. Взрыв бомбы происходит, когда эта энергия выделяется наружу. Например, бомба, сброшенная на Хиросиму и Нагасаки во время Второй мировой войны, была атомной бомбой.

Изобретение водородной бомбы

И вновь, отвечая на вопрос, – кто первым в мире изобрел водородную бомбу, невозможно не упомянуть США.

Сама по себе такая бомба берет в основу термоядерный процесс. По ошибке изначально атомную бомбу называли водородной, но это не так. Атомная сильно слабее термоядерной бомбы, а также отличается самим процессом того, как происходит взрыв.

Военное и послевоенное время было пиком научной деятельности многих ядерных физиков, поэтому создалась водородная бомба в теории достаточно быстро. Было необходимо собрать ее и испытать.

В мире

Гарри Трумэн, 33-й президент США, официально заявил о начале работ по созданию термоядерной бомбы после того, как произошло испытание атомной бомбы в СССР.Появилась идея создать еще более мощное оружие, чтобы вновь иметь превосходство над другими странами.

Какой ученый изобрел водородную бомбу? С её созданием в США связывают имя Эдварда Теллера. Он начал заниматься этим еще в 1942 году.Американцы успешно завершили создание к 1951 году, но на бомбу это похоже не было: огромная стационарная установка, которая весила 82 тонны.

Кодовое название такой установки – «Иви Майк». Взрыв состоялся на атолле Эниветок (острова) 1 ноября 1952 года. Мощность поражала: водородная бомба в 1000 раз превзошла атомную. Кратер был больше мили диаметром, а также был полностью разрушен один из островков атолла.

В СССР

Стоит также рассказать о том, кто изобрёл водородную бомбу первым в Советском союзе. Это в 1948 году был Андрей Сахаров. Он продемонстрировал свою конструкцию бомбы с названием РДС-6.

Протестировать её решили всё на том же полигоне Семипалатинска в 1953 году. Перед испытанием вновь застроили полигон под городок, убрали все следы прошлых атомных испытаний, разместили много техники и измерительной аппаратуры. Были также установлены устройства, которые могли бы зафиксировать всё на видео.

Советская водородная бомба была гораздо лучше американской. Она действительно оправдывала своё название. Её масса составляла 7 тонн, а значит, была транспортабельной. Её можно было разместить в бомбардировщике.

Взрыв, который снёс все на своём пути, оказался слишком мощным. Ударная волна оценивалась в 4 километра. Экологические последствия оставляли желать лучшего. Мощность взрыва РДС-6 оценили в 20 раз выше американской «Иви Майк». Но стоило ли оно того? По последним рассекреченным данным, от экологических последствий этих испытаний пострадало более миллиона человек.

Последствия обогащения

Для получения ядерной энергии путем деления особый интерес представляют ядра изотопов урана с атомным весом 233 и 235 (233U и 235U) и плутония — 239 (239Pu), делящиеся под воздействием нейтронов. Связь частиц во всех ядрах обусловлена сильным взаимодействием, особо эффективным на малых расстояниях. В крупных ядрах тяжелых элементов эта связь слабее, поскольку электростатические силы отталкивания между протонами как бы «разрыхляют» ядро. Распад ядра тяжелого элемента под действием нейтрона на два быстро летящих осколка сопровождается высвобождением большого количества энергии, испусканием гамма-квантов и нейтронов — в среднем 2,46 нейтрона на одно распавшееся урановое ядро и 3,0 — на одно плутониевое. Благодаря тому что при распаде ядер число нейтронов резко возрастает, реакция деления может мгновенно охватить все ядерное горючее. Так происходит при достижении «критической массы», когда начинается цепная реакция деления, приводящая к атомному взрыву.

1 — корпус

2 — взрывной механизм

3 — обычное взрывчатое вещество

4 — электродетонатор

5 — нейтронный отражатель

6 — ядерное горючее (235U)

7 — источник нейтронов

8 — процесс обжатия ядерного горючего направленным внутрь взрывом

В зависимости от способа получения критической массы различают атомные боеприпасы пушечного и имплозивного типа. В простом боеприпасе пушечного типа две массы 235U, каждая из которых меньше критической, соединяются с помощью заряда обычного взрывчатого вещества (ВВ) путем выстрела из своеобразной внутренней пушки. Ядерное горючее можно разделить и на большее число частей, которые будут соединяться взрывом окружающего их ВВ. Такая схема сложнее, но позволяет достигать больших мощностей заряда.

В боеприпасе имплозивного типа уран 235U или плутоний 239Pu обжимается взрывом расположенного вокруг них обычного взрывчатого вещества. Под действием взрывной волны плотность урана или плутония резко повышается и «надкритическая масса» достигается при меньшем количестве делящегося материала. Для более эффективного протекания цепной реакции горючее в боеприпасах обоих типов окружают нейтронным отражателем, например на основе бериллия, а для инициирования реакции в центре заряда располагают источник нейтронов.

Изотопа 235U, необходимого для создания ядерного заряда, в природном уране содержится всего 0,7%, остальное — стабильный изотоп 238U. Для получения достаточного количества разделяющегося материала производят обогащение природного урана, и это было одной из самых сложных в техническом плане задач при создании атомной бомбы. Плутоний получают искусственно — он накапливается в промышленных ядерных реакторах, за счет превращения 238U в 239Pu под действием потока нейтронов.

Клуб взаимного устрашения

Взрыв советской ядерной бомбы 29 августа 1949 года сообщил всем об окончании американской ядерной монополии. Но ядерная гонка только разворачивалась, к ней очень скоро присоединились новые участники.

3 октября 1952 года взрывом собственного заряда заявила о вступлении в «ядерный клуб» Великобритания, 13 февраля 1960 года — Франция, а 16 октября 1964 года — Китай.

Политическое воздействие ядерного оружия как средства взаимного шантажа хорошо известно. Угроза быстрого нанесения противнику мощного ответного ядерного удара была и остается главным сдерживающим фактором, вынуждающим агрессора искать другие пути ведения военных действий

Это проявилось и в специфическом характере третьей мировой войны, осторожно именовавшейся «холодной»

Официальная «ядерная стратегия» хорошо отражала и оценку общей военной мощи. Так, если вполне уверенное в своей силе государство СССР в 1982 году объявило о «неприменении ядерного оружия первым», то ельцинская Россия вынуждена была объявить о возможности применения ядерного оружия даже против «неядерного» противника. «Ракетно-ядерный щит» и сегодня остался главной гарантией от внешней опасности и одной из основных опор самостоятельной политики. США в 2003 году, когда агрессия против Ирака была уже решенным делом, от болтовни о «несмертельном» оружии перешли к угрозе «возможного использования тактического ядерного оружия». Другой пример. Уже в первые годы XXI века «ядерный клуб» пополнили Индия и Пакистан. И почти сразу последовало резкое обострение противостояния на их границе.

Эксперты МАГАТЭ и пресса давно утверждают, что Израиль «в состоянии» произвести несколько десятков ядерных боеприпасов. Израильтяне же предпочитают загадочно улыбаться — сама возможность наличия ядерного оружия остается мощным средством давления даже в региональных конфликтах.

Патроны

Урал 4320 двигатели официальная норма расхода топлива на 100 км

Изменением модификаций Урала, менялись версии атмосферных дизельным V8. До 1993 года почти все модели были оснащены дизельным мотором КамАЗ-740, но с 1993 стали внедрять в конструкцию вездехода 11.5-литровые моторы V6 ЯМЗ-326 или 14.9-литровые моторыV8 ЯМЗ-238, которые могли развить мощность до 220 и 230 лошадиных сил.

Более современные модели оснащаются экономичными двигателями ЯМЗ-536 объемом 6.7 л и мощностью 230 л.с. или турбодизелем V6 ЯМЗ-6565 объемом 11.1 л и мощностью 300 л.с. Управление осуществляется с помощью механической системы управления, состоящей из пяти ступеней с раздаткой в две ступени.

Для моделей УРАЛ 4320 нормированное значение равно 32 л. потребления дизельного горючего на сотню километров дороги. Но это всего лишь усредненное значение. Например, в летний сезон расход горючего достигает 41,5 л., а холодный период года до 44,9 л.

Цепные ядерные реакции

Одного удара нейтрона достаточно для расщепления менее стабильного атома U-235, создания атомов меньших элементов (чаще всего бария и криптона) и высвобождения тепла и гамма-излучения (самой мощной и смертоносной формы радиоактивности).

Эта цепная реакция происходит, когда “запасные” нейтроны из этого атома вылетают с достаточной силой, чтобы расщепить другие атомы U-235, с которыми они соприкасаются. В теории необходимо расщепить только один атом U-235, который будет выпускать нейтроны, которые будут расщеплять другие атомы, которые будут выпускать нейтроны … и так далее. Эта прогрессия не арифметическая; он геометрический и происходит в миллионную долю секунды.

Минимальная сумма для начала цепной реакции, как описано выше, называется сверхкритической массы. Для чисто U-235, 110 фунтов (50 килограмм). Однако Уран никогда не бывает достаточно чистым, поэтому в действительности потребуется больше, например, U-235, U-238 и плутоний.

Понятие специальных подразделений

Силы специальных операций РФ – это особые подразделения в структуре Вооруженных Сил, о чем уже было указано ранее. Но мало кто понимает, что собой представляет категория «специальные подразделения» вообще. Как правило, формирования подобного рода создаются в составе армии, так как именно в условиях боевых действий очень часто возникают ситуации, требующие особого подхода. Но существуют специальные подразделения также и во внутренних службах, например полиции и т. п. Учитывая это, можно сделать вывод, что специальные подразделения – это формирования в системе органов, занимающихся всесторонней обороной государства, на плечи которых ложится выполнение наиболее опасных и сложных по своей сути миссий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector