Галактика млечный путь

Урал-4320 фото

Патрон .416 Rigby

Неполная разборка

После неполной разборки устройство можно поместить в транспортировочный кейс. Обратная сборка займет от 30 до 60 секунд в зависимости от сноровки владельца.

Для неполной разборки необходимо:

  1. нажать защелку магазина и отделить магазин;
  2. утопить защелку глушителя и отделить его;
  3. отжать фиксатор сепаратора, отделить эту часть устройства;
  4. убрать пружину сепаратора;
  5. крышку ствола убрать, утопив фиксатор этой части;
  6. подать возвратный механизм назад и снять;
  7. отвести ударник максимально назад и снять его таким образом;
  8. снять раму затвора и сам затвор, также оттянув максимально назад;
  9. утопить защелку и снять цевье;
  10. последней снимается трубка – поворачивается по ходу стрелки часов до щелчка.

Если необходимо собрать изделие, производятся обратные действия.

Галактики Местной группы

Название Подгруппа Тип Созвездие Примечание
Спиральные галактики
Млечный Путь Млечного Пути SBbc Все созвездия Вторая по размеру. Возможно, менее массивная, чем Андромеда.
Галактика Андромеды (M31, NGC 224) Андромеды SA(s)b Андромеда Крупнейшая по размеру. Возможно, самый массивный член группы.
Галактика Треугольника (M33, NGC 598) Треугольника SAc Треугольник
Эллиптические галактики
M110 (NGC 205) Андромеды E6p Андромеда спутник галактики Андромеды
M32 (NGC 221) Андромеды E2 Андромеда спутник галактики Андромеды
Неправильные галактики
Вольф-Ландмарк-Мелотт (WLM, DDO 221) Ir+ Кит
IC 10 KBm or Ir+ Кассиопея
Малое Магелланово Облако (SMC, NGC 292) Млечного Пути SB(s)m pec Тукан спутник галактики Млечный Путь
Карликовая галактика в Большом Псе (Canis Major Dwarf) Млечного Пути Irr Большой Пёс спутник галактики Млечный Путь
Рыбы (LGS3) Треугольника Irr Рыбы Возможный спутник галактики Треугольника (но точно входит в подгруппу Треугольника)
IC 1613 (UGC 668) IAB(s)m V Кит
Карликовая галактика в Фениксе (PGC 6830) Irr Феникс
Большое Магелланово облако (LMC) Млечного Пути Irr/SB(s)m Золотая Рыба спутник галактики Млечный Путь
Лев A (Лев III) IBm V Лев
Секстант B (UGC 5373) Ir+IV-V Секстант
NGC 3109 Ir+IV-V Гидра
Секстант A (UGCA 205) Ir+V Секстант
Карликовые эллиптические галактики
NGC 147 (DDO 3) Андромеды dE5 pec Кассиопея спутник галактики Андромеды
SagDIG (Карликовая неправильная галактика в Стрельце) IB(s)m V Стрелец Самый удалённый от центра масс Местной группы
NGC 6822 (Barnard’s Galaxy) IB(s)m IV—V Стрелец
Карликовая неправильная галактика в Пегасе (DDO 216) Irr Пегас
Карликовые сфероидальные галактики
Волопас I dSph Волопас
Кит dSph/E4 Кит
Гончие Псы I и Гончие Псы II dSph Гончие Псы
Андромеда III dE2 Андромеда спутник галактики Андромеды
NGC 185 Андромеды dE3 pec Кассиопея спутник галактики Андромеды
Андромеда I Андромеды dE3 pec Андромеда спутник галактики Андромеды
Скульптор (E351-G30) Млечного Пути dE3 Скульптор спутник галактики Млечный Путь
Андромеда V Андромеды dSph Андромеда спутник галактики Андромеды
Андромеда II Андромеды dE0 Андромеда спутник галактики Андромеды
Печь (E356-G04) Млечного Пути dSph/E2 Печь спутник галактики Млечный Путь
Карликовая галактика в Киле (E206-G220) Млечного Пути dE3 Киль спутник галактики Млечный Путь
Antlia Dwarf dE3 Насос
Лев I (DDO 74) Млечного Пути dE3 Лев спутник галактики Млечный Путь
Секстант Млечного Пути dE3 Секстант I спутник галактики Млечный Путь
Лев II (Лев B) Млечного Пути dE0 pec Лев спутник галактики Млечный Путь
Малая Медведица Млечного Пути dE4 Малая Медведица спутник галактики Млечный Путь
Карликовая галактика в Драконе (DDO 208) Млечного Пути dE0 pec Дракон спутник галактики Млечный Путь
SagDEG (Карликовая эллиптическая галактика в Стрельце) Млечного Пути dSph/E7 Стрелец спутник галактики Млечный Путь
Tucana Dwarf dE5 Тукан
Кассиопея (Андромеда VII) Андромеды dSph Кассиопея спутник галактики Андромеды
Карликовая сфероидальная галактика в Пегасе (Андромеда VI) Андромеды dSph Пегас спутник галактики Андромеды
Большая Медведица I и Большая Медведица II Млечного Пути dSph Большая Медведица спутник галактики Млечный Путь
Тип определён не точно
Поток Девы dSph (remnant)? Дева В процессе слияния с Млечным Путём
Виллман 1  ? Большая Медведица возможно, шаровое звёздное скопление
Андромеда IV Irr? Андромеда возможно, не галактика
UGC-A 86 (0355+66) Irr, dE or S0 Жираф
UGC-A 92 (EGB0427+63) Irr or S0 Жираф
Возможно не члены Местной группы
GR 8 (DDO 155) Im V Дева
IC 5152 IAB(s)m IV Индеец
NGC 55 SB(s)m Скульптор
Водолей (DDO 210) Im V Водолей
NGC 404 E0 or SA(s)0− Андромеда
NGC 1569 Irp+ III—IV Жираф
NGC 1560 (IC 2062) Sd Жираф
Жираф A Irr Жираф
Argo Dwarf Irr Киль
UKS 2318-420 (PGC 71145) Irr Журавль
UKS 2323-326 Irr Скульптор
UGC 9128 (DDO 187) Irp+ Волопас
Паломар 12 (Capricornus Dwarf) Козерог Шаровое звёздное скопление, ранее определялось как галактика
Паломар 4 (первоначально определена как карликовая галактика UMa I) Большая Медведица Шаровое звёздное скопление, ранее определялось как галактика
Секстант C Секстант

Спутники Андромеды

Аналоги

Положение Солнца в галактике

Солнечная система равноудалена от центра галактики и от ее края примерно на 25000 световых лет и находится между главными ветвями, в небольшом рукаве Ориона. Его протяженность и диаметр — 10000 и 3500 световых лет соответственно.

Солнце и окружающие его тела находятся в области «жизненного оптимума» Млечного Пути.

Это спокойный район Вселенной, потому что:

  • местные планеты давно сформированы;
  • «блуждающие» небесные тела разрушились или покинули пределы системы;
  • число мелких объектов уже снизилось и не представляет собой прежний хаос.


Положение галактики Млечный путь в обозреваемой вселенной. Credit: NASA.

Перевозка тела погибшего (умершего) военнослужащего

Военные звания и погоны в морских войсках России

Обязательства и статус в морских войсках подобен тем, которые используются в сухопутных, однако наименования у моряков иные.

Младшие звания:

  • старшина 2 статьи;
  • старшина 1 статьи;
  • главный старшина;
  • главный корабельный старшина;
  • мичман;
  • старший мичман.

Градация званий в морских войсках следующая (начинается с младших офицерских званий):

  1. Младший лейтенант, на просвете имеется одна полоса.
  2. Лейтенант имеет две звезды по бокам красной линии.
  3. Старший лейтенант, на погонах имеется три звезды.
  4. Лейтенант-капитан, на просветах расположено четыре звезды.

Средние офицерские морские звания подразделяются следующим образом:

  1. Капитан (3 ранг), на погонах среднего звена имеется уже два просвета, а звезды в размерах больше. У данного ранга звезда находится между красными полосами.
  2. Капитан (2 ранг), две звезды, расположенные непосредственно на просветах.
  3. Капитан (1 ранг), три звезды, две – на полосах, одна – между ними.

Состав высшего разряда характеризуется следующими званиями:

  1. Контр-адмирал. Погоны этого ранга не носят на себе просветы, на них сразу вышиваются звезды. Размер звезды снова увеличивается. Военнослужащие этого звания носят одну звезду.
  2. Вице-адмирал. На погонах расположено две звезды.
  3. Адмирал. Военнослужащие этого звания носят три звезды на погонах.
  4. Адмирал флота. Военнослужащий, удостоенный этого звания, которое в военно-морском флоте является высшим, носит на погонах одну крупную звезду, которая в диаметре составляет 4 см.

В любом случае военнослужащий должен пройти проверку временем, прежде чем он сможет исполнять обязанности высших чинов.

https://www.youtube.com/embed

Запчасти и шины на Citroen C4, 2 поколение

Рентгеновский «Спектр-РГ», который создает новую карту Вселенной

Второй аппарат серии получил название «Спектр-Рентген-Гамма» и отправился на орбиту в 2019 году — фактически, опаздывая на 21 год относительно первоначальных планов проекта, созданного в 1987 году совместным коллективом ученых СССР, Финляндии, ГДР, Дании, Италии и Великобритании.

Аппарат представляет собой ту же платформу «Навигатор» разработки НПО Лавочкина, на которой базируется и комплекс «Спектр-Р», однако состав оборудования принципиально отличается.

Изначально предполагалось оборудовать исследовательский комплекс 3 рентгеновскими и 1 ультрафиолетовым телескопами, а так же парой мониторов неба и детектором гамма-всплесков.

В окончательном варианте остались только российский ART-XC и немецкий eROSITA.

Они работают в разных, но дополняющих друг друга диапазонах, выполняя картографирование всего неба в рентгеновском диапазоне с новым уровнем точности и разрешающей способности.

«Спектр-РГ» позволит регистрировать до 90 тысяч новых рентгеновских объектов ежегодно, ранее недоступных для человеческой науки.

Обсерватория, выведенная в июле 2019 (против запланированного 2011) стала первым российским аппаратом, работающим в  на высоте полутора миллионов километров за Землей на линии Солнце — Земля.

Таким образом, на станцию действует только гравитация системы «Земля-Солнце», поэтому относительно Земли станция практически неподвижна.

В результате, с помощью нового «Спектра» будет построена подробная рентгеновская карта Млечного Пути и ближайших галактик.

Работа займет 6,5 лет и позволит обнаружить новые гравитационные линзы, открыть новые ядра и скопления галактик, уточнить модель темной энергии и, возможно, процесс эволюции темной материи — таинственных космологических сущностей.

Хаббл, галактики и расширяющаяся Вселенная

Стоит выразить огромную благодарность Эдвину Хабблу, который в 1924 году доказал, что наша галактика – одна из многих. При помощи своего 100-дюймового телескопа он заметил, что группа звезд, которые ранее считались частью Млечного Пути, на самом деле, являются галактикой Андромеды, расположенной в 2.2 миллионах световых лет. В 1927 году Ян Оорт доказал, что галактики совершают вращение вокруг своего центра.

Хаббл также выявил, что отдаленные галактики уходят от нас на больших скоростях. Это наблюдение стало законом Хаббла – Вселенная расширяется.

В 1996 году телескоп Хаббла добыл снимки 1500 далеких галактик, пребывающих в процессе формирования, что увеличило предположительное количество галактик. В 1990-х гг. полагали, что их может быть только 50 миллиардов. Конечно, современные цифры намного больше. На нашем сайте у вас есть возможность изучить все разновидности галактик и рассмотреть качественные фото, схемы и рисунки космических структур Вселенной.

  • Что такое галактика?;
  • Сколько галактик во Вселенной;
  • Самая большая галактика;
  • Ближайшая к нам галактика;
  • Самая молодая галактика;
  • Самый далекий запечатленный объект;
  • Сколько галактик было найдено?;
  • Сколько планет в галактике?;
  • Расстояние до Андромеды;
  • С кем столкнется Млечный Путь?;
  • Как называется наша галактика?;
  • В какой галактике расположена Земля;
  • Почему наша галактика называется Млечный Путь?;
  • Каким образом галактика получает свое название?;
  • Имена галактик;

Сверхскопления и скопления галактик

  • Великий аттрактор;
  • Скопление Девы;
  • Сверхскопление Девы;
  • Скопление галактик;
  • Сверхскопления;
  • Местная группа галактик;

Строение галактики

  • Эволюция галактик;
  • Вращение галактик;
  • Как появляются крупные галактики?;
  • Галактический центр;
  • Активное галактическое ядро;
  • Галактическая плоскость;
  • Галактический экватор;
  • Галактическое выравнивание;
  • Что такое межгалактическое пространство?;
  • Блазары;

Типы галактик

  • Спиральные галактики;
  • Спиральные галактики с перемычкой;
  • Неправильные галактики;
  • Эллиптические галактики;
  • Карликовые галактики;
  • Галактика из темной материи;
  • Формы галактик;
  • Магеллановы облака;
  • Большое Магелланово Облако;
  • Малое Магелланово Облако;
  • Другие галактики;

Юные десантники ЮВПК «Патриот России» «Союза десантников Удмуртии» участвуют в Республиканской спартакиаде «Гвардия» на Кубок имени М.Т. Калашникова

29 апреля на спортивно-уличном комплеке МАУ СКК «Прогресс» (г. Глазов) прошел первый тур Муниципального этапа Республиканской спартакиады «Гвардия» на Кубок имени М.Т. Калашникова среди юнармейских, кадетских отрядов и объединений города Глазов. В первом этапе «Силовое многоборье» приняли участие наши курсанты-десантники ЮВПК «Патриот России» и Юнармейцы МБОУ СОШ №17. В мероприятии приняли участие 35 учащихся от 13 до 16 лет.

Достойно показали себя юные гвардейцы клуба:

— 1 место в упражнении «Подтягивание на турнике из виса на высокой перекладине» занял Цыганов Владимир,

— 2 место в упражнении «Подъем туловища из положения лёжа на спине» — Цыганов Владимир,

— 3 место в упражнении «Рывок гири весом 16 кг.» — Павел Чучкалов,

— 3 место в упражнении «Подъем туловища из положения лёжа на спине» — Иван Шилов.

Можно ли увидеть Млечный путь невооруженным глазом?

Так как мы являемся частью галактики, то получается посмотреть на неё со стороны невозможно. Но увидеть Млечный путь невооруженным глазом можно практически с любой точки Земли. Точнее для наблюдения нам доступна лишь часть галактики.

Где можно увидеть Млечный путь?

Как уже было сказано, возможно наблюдать Млечный путь практически везде нашей планеты. Стоит отметить, что довольно сложно разглядеть его с точек, которые выше 500 северной широты. К тому же, лучший обзор для наблюдения это южная сторона. Более того, летом необходимо смотреть на юг, весной на запад, а осенью на восток. Также не стоит пытаться наблюдать в зимний период. Лучше всего выбрать летнее время для наблюдения. Потому как в это время Млечный путь более отдалён от Солнца. Соответственно, его свет не будет помехой.

Солнечная система во Млечном пути

Как увидеть Млечный путь?

Как уже было сказано, важным моментом выступает время, когда вы хотите увидеть галактику. Очевидно, что необходимо дождаться темноты. Кроме того, лучше всего выбрать безлунную и безоблачную ночь. Опытные астрономы советуют выбирать время с интервалом в два часа до или после захода Солнца. Стоит учитывать, что городская освещённость является серьёзной помехой для наблюдения за всеми звёздными объектами. А значит, идеальным местом будут наиболее отдалённые участки от населённых пунктов.

Млечный путь

Разумеется, чтобы детальнее и более чётко увидеть Млечный путь, необходимо прибегнуть к помощи телескопа. На крайний случай можно использовать бинокль. Как выбрать телескоп вы можете прочитать тут Сначала нужно определить, где находится юг. В этом может помочь компас. Кстати, необязательно приобретать само устройство. Потому что сейчас он есть в любом телефоне. Затем нужно найти плотное скопление звёзд-ядро. В нём можно рассмотреть несколько тёмных пятен. Это облака, которые закрывают часть Млечного пути. Их называют Большим Разрывом. В конце концов вы увидите на небе тонкую звёздную полосу. Это и будет Млечный путь в своей красе.

Млечный путь (рис. 2)

В России Млечный путь можно увидеть в отдалённых уголках страны. Но в последнее время города растут и становятся всё более освещёнными. Поэтому наблюдение за космосом невооружённым глазом и даже в телескоп становится сложнее и проблематичнее. Однако, всё также возможно.

В заключении хочется посоветовать выбирать благоприятное время и место для того, чтобы увидеть Млечный путь. С уверенностью можно сказать, что потратив время на подготовку, вы увидите потрясающее и красивое зрелище. Не стоит забывать, что это наша галактика. И, согласитесь, это захватывает дух. К тому же, определенно приятно.

Галактики с собственными именами

Галактика Происхождение названия
Млечный Путь По облику туманности, образуемой этой галактикой на ночном небе (напоминает дорожку из молока).
Большое Магелланово Облако По фамилии Фернана Магеллана, наблюдавшего их в 1519 году во время кругосветного путешествия.
Малое Магелланово Облако
Галактика Андромеды По созвездиям, в которых они находятся.
Галактика Скульптор (она же Галактика Серебряная Монета)
Галактика Треугольника
Галактика Боде По фамилии обнаружившего её в 1774 году Элерта Боде.
Объект Мейола По фамилии обнаружившего её в 1940 году Николаса Мейола.
Объект Хога По фамилии обнаружившего её в 1950 году Артура Хога.
Галактика Водоворот Названа так из-за визуального сходства с водоворотом (на момент открытия это была первая галактика с чётко выраженной спиральной структурой).
Галактики Антенны Из-за визуального сходства с соответствующими предметами.
Галактика Веретено
Галактика Головастик
Галактика Колесо телеги
Галактика Комета
Галактики Мыши
Галактика Подсолнух
Галактика Сигара
Галактика Серебряная Монета (она же Галактика Скульптор)
Галактика Сомбреро
Галактика Фейерверк
Галактика Вертушка
Галактика Спящая Красавица (она же Галактика Чёрный Глаз)
Галактика Южная Вертушка

Navigation menu

Броневой корпус и башня

Броневой корпус Т-34 — сварной, собиравшийся из катаных плит и листов гомогенной стали марки МЗ-2 (И8-С), толщиной 13, 16, 40 и 45 мм, после сборки подвергавшихся поверхностной закалке. Броневая защита танка противоснарядная, равнопрочная, выполненная с рациональными углами наклона. Лобовая часть состояла из сходящихся клином броневых плит толщиной 45 мм: верхней, расположенной под углом в 60° к вертикали и нижней, расположенной под углом в 53°. Между собой верхняя и нижняя лобовые бронеплиты соединялись при помощи балки. Борта корпуса в нижней своей части располагались вертикально и имели толщину в 45 мм. Верхняя часть бортов, в районе надгусеничных полок, состояла из 40-мм броневых плит, расположенных под углом в 40°. Кормовая часть собиралась из двух сходившихся клином 40-мм броневых плит: верхней, расположенной под углом в 47° и нижней, расположенной под углом в 45°. Крыша танка в районе моторно-трансмиссионного отделения собиралась из 16-мм броневых листов, а в районе подбашенной коробки имела толщину в 20 мм. Днище танка имело толщину 13 мм под моторно-трансмиссионным отделением и 16 мм в лобовой части, также небольшой участок кормовой оконечности днища состоял из 40-мм бронеплиты. Башня Т-34 — двухместная, близкой к шестигранной в плане формы, с кормовой нишей. В зависимости от завода-производителя и года выпуска, на танк могли устанавливаться башни различной конструкции. На Т-34 первых выпусков устанавливалась сварная башня из катаных плит и листов. Стенки башни выполнялись из 45-мм броневых плит, расположенных под углом в 30°, лоб башни представлял собой 45-мм, изогнутую в форме половины цилиндра, плиту с вырезами под установку орудия, пулемёта и прицела. Крыша башни состояла из 15-мм броневого листа, изогнутого под углом от 0° до 6° к горизонтали, днище кормовой ниши — горизонтальный 13-мм бронелист. Хотя другие типы башен также собирались при помощи сварки, именно башни первоначального типа известны в литературе под названием «сварных».

Структура Млечного Пути

Если внимательно рассмотреть структуру Млечного Пути, то мы увидим следующее:

  1. Галактический диск. Здесь сосредоточено большинство звезд Млечного Пути.

Сам диск разбит на следующие части:

  • Ядро это центр диска;
  • Дуги – области вокруг ядра, в том числе непосредственно области выше и ниже плоскости диска.
  • Спиральные рукава – это области, которые выступают наружу от центра. Наша Солнечная Система находится в одном из спиральных рукавов Млечного Пути.
  1. Шаровые скопления. Несколько сотен из них разбросаны выше и ниже плоскости диска.
  2. Гало. Это большая, тусклая область, которая окружает всю галактику. Гало состоит из газа большой температуры и, возможно, темной материи.

Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч световых лет. Центр симметрии гало Млечного Пути совпадает с центром галактического диска. Состоит гало в основном из очень старых, неярких звезд. Возраст сферической составляющей Галактики превышает 12 млрд лет. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж (в переводе с английского «утолщение»). Вращается гало в целом очень медленно.

По сравнению с гало диск вращается заметно быстрее. Он представляет собой как бы две сложенные краями тарелки. Диаметр диска Галактики около 30 кпк (100 000 световых лет). Толщина – около 1000 световых лет. Скорость вращения не одинакова на различных расстояниях от центра. Она быстро возрастает от нуля в  центре до 200-240 км/с на расстоянии 2 тыс. световых лет от него. Масса диска в 150 млрд раз больше массы Солнца (1,99*1030 кг). В диске концентрируются молодые звезды и звездные скопления. Среди них много ярких и горячих звезд. Газ в диске Галактики распределен неравномерно, образуя гигантские облака. Основным химическим элементом в нашей Галактике является водород. Примерно на 1/4 она состоит из гелия.

Одной из самых интересных областей Галактики считается ее центр, или ядро, расположенное в направлении созвездия Стрельца. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Поэтому ее начали изучать только после создания приемников инфракрасного и радиоизлучения, которое поглощается в меньшей степени. Для центральных областей Галактики характерна сильная концентрация звезд: в каждом кубическом парсеке их многие тысячи. Ближе к центру отмечаются области ионизированного водорода и многочисленные источники инфракрасного излучения, свидетельствующие о происходящем там звездообразовании. В самом центре Галактики предполагается существование массивного компактного объекта – черной дыры массой около миллиона масс Солнца.

Одним из наиболее заметных образований являются спиральные ветви (или рукава). Они и дали название этому типу объектов – спиральные галактики. Вдоль рукавов в основном сосредоточены самые молодые звезды, многие рассеянные звездные скопления, а также цепочки плотных облаков межзвездного газа, в которых продолжают образовываться звезды. В отличие от гало, где какие-либо проявления звездной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвездного пространства в звезды и обратно. Спиральные рукава Млечного Пути в значительной мере скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвездного водорода, концентрирующегося вдоль длинных спиралей. По современным представлениям, спиральные рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звезд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.

Морская пехота

Астрофизические параметры и типы галактик

Первые исследования космоса, проведенные в начале XX века, дали обильную почву для размышлений. Обнаруженные в объектив телескопа космические туманности, которых со временем насчитали более тысячи, представляли собой интереснейшие объекты во Вселенной. Длительное время эти светлые пятна на ночном небе считались скоплениями газа, входящими в структуру нашей галактики. Эдвин Хаббл в 1924 году сумел измерить расстояние до скопления звезд, туманностей и сделал сенсационное открытие: эти туманности — ни что иное, как далекие спиралевидные галактики, самостоятельно странствующие в масштабах Вселенной.

Американский астроном впервые предположил, что наша Вселенная – это множество галактик. Исследования космоса в последней четверти XX века, наблюдения, сделанные с помощью космических аппаратов и техники, включая знаменитый телескоп Хаббл, подтвердили эти предположения. Космос безграничен и наш Млечный путь — далеко не самая крупная галактика во Вселенной и к тому же не является ее центром.

Усилиями Эдвина Хаббла мир получил систематизированную классификацию галактик, делящую их на три типа:

  • спиральные;
  • эллиптические;
  • неправильные.

Эллиптические галактики и спиральные являются самыми распространенными типами. К ним относятся наша галактика Млечный Путь, а также соседняя с нами галактика Андромеда и многие другие галактики во Вселенной.

По классификации такие галактики обозначаются латинской буквой E. Все на сегодняшний день известные эллиптические галактики разделены на подгруппы E0-E7. Распределение по подгруппам осуществляется в зависимости от конфигурации: от галактик почти круглой формы (E0, E1 и E2)до сильно растянутых объектов с индексами E6 и E7. Среди эллиптических галактик встречаются карлики и настоящие гиганты, имеющие диаметры в миллионы световых лет.

К спиральным галактикам относятся два подтипа:

  • галактики, представленные в виде пересеченной спирали;
  • нормальные спирали.

Первый подтип выделяется следующими особенностями. По форме такие галактики напоминают правильную спираль, однако в центре такой спиральной галактики находится перемычка (бар), дающая начало рукавам. Такие перемычки в галактике обычно являются следствием физических центробежных процессов, делящих ядро галактики на две части. Существуют галактики с двумя ядрами, тандем которых и составляет центральный диск. Когда ядра встречаются, перемычка исчезает и галактика становится нормальной, с одним центром. Существует перемычка и в нашей галактике Млечный путь, в одном из рукавов которой находится наша Солнечная система. От Солнца к центру галактики путь по современным оценкам составляет 27 тыс. световых лет. Толщина рукава Ориона Лебедя, в котором пребывает наше Солнце и вместе с ним наша планета, составляет 700 тыс. световых лет.

В соответствии с классификацией спиральные галактики обозначаются латинскими буквами Sb. В зависимости от подгруппы, существуют и другие обозначения спиральных галактик: Dba, Sba и Sbc. Разница между подгруппами определяется длиной бара, его формой и конфигурацией рукавов.

Самый редкий тип — неправильные галактики. Эти вселенские объекты представляют собой крупные скопления звезд и туманностей, не имеющие четкой формы и структуры. В соответствии с классификацией они получили индексы Im и IO. Как правило, у структур первого типа диска нет или он слабо выражен. Нередко у таких галактик можно рассмотреть подобие рукавов. Галактики с индексами IO представляют собой хаотическое скопление звезд, облаков газа и темной материи. Яркими представителям такой группы галактик являются Большое и Малое Магелланово Облако.

Исходя из имеющейся классификации и по результатам исследований, можно с некоторой долей уверенности ответить на вопрос, сколько галактик во Вселенной и какого они типа. Больше всего во Вселенной спиральных галактик. Их более 55 % от общего количества всех вселенских объектов. Эллиптических галактик в два раза меньше — всего 22% от общего числа. Неправильных галактик, аналогичных Большому и Малому Магеллановым Облакам, во Вселенной только 5%. Одни галактики соседствуют с нами и находятся в поле зрения мощнейших телескопов. Другие находятся в самом дальнем пространстве, где преобладает темная материя и в объективе видна больше чернота бескрайнего космоса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector