Защита электроники от электромагнитного импульса

Содержание:

Подавление вражеской техники новым комплексом

В современных войнах главную ценность представляет экономика страны противника. Поэтому военными разрабатывается оружие не массового поражения, а «гуманное». Последнее являет собой приспособление, которое не наносит вред жизнедеятельности, а лишь блокирует некоторые его аспекты. Несмотря на «гуманность», бытует мнение, что страшнее атомной бомбы электромагнитное оружие “Алабуга”. Такая система, как и большинство других, работает на генераторе импульсов. Основной задачей является поражение техники вражеских войск.

Запуск генератора происходит на высоте более 200 метров, радиус поражения – около 3.5 километра. Исходя из таких параметров, становится понятным, что одной ракеты нового поколения достаточно для нейтрализации крупного армейского подразделения.

Специалисты столкнулись с некоторыми проблемами при конструировании: из-за достаточно больших габаритов и веса для доставки конструкции необходимо использовать мощные ракеты. Так как параметры средства доставки существенно увеличиваются, оружие легче обнаружить средствами обороны противника.

История разработки

В 1956 году Военно-транспортная авиация (ВТА) получила статус отдельного рода войск ВВС. В этом же году командующим ВТА были сформулированы и характеристики, которыми должен был обладать самолет, отвечающий требованиям стандартов тех времен. Взлет и посадка должны были осуществляться, в том числе и с грунта, с площадок ограниченных размеров.

Летать самолет должен был в сложных метеоусловиях, как днем, так и ночью. Самолет должен был иметь грузовую кабину, оборудованную лебедкой и грузоподъемником, широкий люк в хвостовой части и загрузочный трап. Высоко расположенное крыло стало характерной отличительной чертой бортов ВТА.

В начале 70х годов высшие чины соединений ВВС стали понимать, что служивший верой и правдой АН-26 уже не справляется с объемом растущих задач тех времен.Этот машина являлась, по сути, небольшой модификацией поступившего на вооружение СССР турбовинтового АН-24 в 1959 году.

Работа в КБ закипела в конце 1970 года, после того как их первоначальные разработки были одобрены командующими ВВС. А чуть позднее ВВС убедили Генерального Секретаря ЦК КПСС и Совмин СССР подписать указ о выделении из бюджета страны довольно больших денег на создание. АН-72 должен был получиться мобильным воздушным судном, пригодным для широкого спектра задач. Он должен быть годным и для перевозки личного состава и техники, выброски грузов и снабжения, при этом приземляться и взлетать с малопригодных площадок и иметь высокие показатели грузоподъемности.

АН-72 в КБ окрестили кодовым названием «самолет 200» и назначили ведущим одного из перспективных конструкторов того времени — Орлова Я. Г. Он довольно четко очертил границы направлений сборки воздушного. Опираясь на требования штаба ВВС, за основу (для получения от образца максимального КПД) было взято применение эффекта Коанда.

Установили турбореактивные двигатели. Румынский ученый Анри Коанд выявил закономерность движения струи из сопла еще в 1932 году. В авиации учитывается атмосферное давление и разница в плотностях струй естественных воздушных потоков и струи исходящей из сопла турбореактивного двигателя. За счет выбора оптимальных режимов работы, в сравнении с турбовинтовыми образцами, в разы подскакивала не только подъемная сила, но и положение «самолета 200» становилось гораздо устойчивее. Это отлично продемонстрировали первые испытания моделей АН-72 в аэродинамических трубах.

Навигация по записям

История

Горькая сладкая правда

Конечно, о том, что «от сладкого портятся зубы», люди знали давно, но доказать роль диеты в появлении кариеса удалось, только когда в ходе многочисленных независимых экспериментов было установлено, что стрептококки присутствуют в зубном налете и у людей, свободных от кариеса.

Первый шаг в доказательстве «вины» сахара сделал датский профессор Фредерик фон дер Фер из Королевского стоматологического колледжа в Орхусе. В 1970 году фон дер Фер провел эксперимент, в котором группа добровольцев с хорошим состоянием зубной эмали полностью исключали гигиену рта — не чистили и не полоскали зубы после еды. Половина из них также несколько раз в день полоскала рот 50%-ным раствором сахарозы.

Отсутствие гигиены увеличивало число бактерий в зубном налете, однако при сравнении состояния зубов тех, кто полоскал рот сладким раствором, с контрольной группой были обнаружены более явные признаки кариеса — деминерализация эмали и появление на ней пятен.

Если раньше, например, в не столь отдаленном XVIII веке, сахар был дорогим продуктом и появлялся в рационе далеко не каждого, то теперь, согласно стоматологическим опросам, большинство людей в России и многих других странах едят сладкое ежедневно

Как отмечает Эдит Кузьмина, важно не столько количество съеденного за раз сладкого, сколько частота его потребления

В идеале стоматологи советуют есть сладкое как можно реже и заменять ферментируемые сахара — глюкозу, сахарозу и фруктозу — сорбитом, маннитом и ксилитом. Эти многоатомные спирты имеют сладкий вкус и часто используются как сахарозаменители (например, при диабете), а кариозные стрептококки просто не могут их утилизировать.

Натуральный ксилит содержится в клубнике и моркови. А если отказаться от сладкого все же не получается, то лучше есть его не «в одиночку», а вместе с другой пищей — это снижает кариесогенность. Те же кислые яблоки, например, требуют обильного отделения слюны, а она разбавляет и, имея щелочную реакцию, частично нейтрализует кислоту, образующуюся во рту после ферментации сахарозы и глюкозы.

Навигация

Как смастерить рукоятку?

1.1. Воздушный ядерный взрыв

Воздушный ядерный взрыв

К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды) (рис. а). Одним из признаков воздушного взрыва является то, что пылевой столб не соединяется с облаком взрыва (высокий воздушный взрыв). Воздушный взрыв может быть высоким и низким.

Точка на поверхности земли (воды), над которой произошел взрыв, называется эпицентром взрыва.

Воздушный ядерный взрыв начинается ослепительной кратковременной вспышкой, свет от которой может наблюдаться на расстоянии нескольких десятков и сотен километров. Вслед за вспышкой в месте взрыва возникает шарообразная светящаяся область, которая быстро увеличивается в размерах и поднимается вверх. Температура светящейся области достигает десятков миллионов градусов. Светящаяся область служит мощным источником светового излучения. Увеличиваясь, огненный шар быстро поднимается вверх и охлаждается, превращаясь в поднимающееся клубящееся облако. При подъеме огненного шара, а затем клубящегося облака создается мощный восходящий поток воздуха, который засасывает с земли поднятую взрывом пыль, которая удерживаются в воздухе в течение нескольких десятков минут.

При низком воздушном взрыве (рис. б) столб пыли, поднятый взрывом, может соединиться с облаком взрыва; в результате образуется облако грибовидной формы. Если воздушный взрыв произошел на большой высоте, то столб пыли может и не соединиться с облаком. Облако ядерного взрыва, двигаясь по ветру, утрачивает свою характерную форму и рассеивается. Ядерный взрыв сопровождается резким звуком, напоминающим сильный раскат грома. Воздушные взрывы могут применяться противником для поражения войск на поле боя, разрушения городских и промышленных зданий, поражения самолетов и аэродромных сооружений. Поражающими факторами воздушного ядерного взрыва являются: ударная волна, световое излучение, проникающая радиация и электромагнитный импульс.

Световое излучение

Основная статья: Световое излучение (поражающий фактор)

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна

Образование головной ударной волны (эффект Маха) при взрыве 20 кт

Разрушения в Хиросиме в результате атомной бомбардировки

Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Ударная волна

Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру. Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.

Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160—3600 кг/м² (0,22—0,36 атм/0.02-0.035 МПа).

Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.

Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

Фото Ан-72

Защита от ЭМИ на производстве

Востребованными должны быть средства защиты от электромагнитных полей и на рабочем месте. Офисные сотрудники сталкиваются с несколькими работающими ПК в одном помещении, без учета других устройств. В таком случае должно соблюдать:

  • нормирование количества компьютеров на единицу площади комнаты;
  • практиковать периодическое проветривание;
  • пользоваться профессиональными мониторами, в комплектацию которых входит защитный экран, или иметь таковой отдельно;
  • выключать все приборы, в том числе из сети, на время обеденного перерыва;
  • если возможно, экранировать отдельно каждое рабочее место.

Если же человек трудится на специфическом производстве, то меры безопасности должны быть еще выше. В таких случаях применяется спецодежда, обувь, шлемы, очки. Строго нормируется время работы каждого сотрудника. Если объект излучения расположен вне помещения, между зданиями оборудуется навес, сооружаются рассеивающие конструкции.

История создания

Поражение ЭМИ-оружием ракет и высокоточных боеприпасов

Принцип действия ЭМИ-гранаты

К ЭМИ-оружию уязвимы ракеты с конструктивными элементами следующего вида:

  • противорадиолокационные ракеты с собственными радарами поиска РЛС;
  • ПТРК 2-го поколения с управлением по не экранированному проводу (TOW или Фагот);
  • ракеты с собственными активными радарами поиска бронетехники (Brimstone, JAGM, AGM-114L Longbow Hellfire);
  • ракеты с управлением по радиоканалу (TOW Aero, Хризантема);
  • высокоточные бомбы с простыми приёмниками GPS-навигации;
  • планирущие боеприпасы с собственными радарами (SADARM).

Использование электромагнитного импульса против электроники ракеты за её металлическим корпусом неэффективно. Воздействие возможно по большей части на головку самонаведения, которое может быть велико в основном для ракет с собственным радаром в её качестве.

Электромагнитное оружие применяется для поражения ракет в комплексе активной защиты «Афганит» из танковой платформы Армата и боевом ЭМИ-генераторе Ранец-Е.

Четвертое китайское господство (1407–1427)

Упрочнение транспорта из ПУОС

В случае забастовки EMP, транспорт будет важной проблемой. Нельзя предполагать, что экстренные службы смогут прийти к вам в случае серьезной травмы, остановки сердца или другой неотложной медицинской помощи

Возможность перемещаться из одного места в другое может также позволить людям искать новые источники пищи и чистой воды в случае, если существующие магазины исчерпаны.

Транспорт также важен в случае необходимости переезда в более безопасное место. Поблизости может быть пожар, который угрожает повредить ваш дом. Или кружат вооруженные группы.

В определенной степени, большинство транспортных средств уже имеют некоторый тип защиты, потому что легковые и грузовые автомобили представляют собой по существу металлические корпуса. Это помогает защитить пассажиров автомобиля, например, в случае молнии.

Тем не менее, новые автомобили также в значительной степени зависят от электронных систем, и испытания показали, что воздействие электромагнитной энергии все еще может серьезно скомпрометировать автомобиль. Основная проблема заключается в том, что эксперименты показали, что взрыв ЭМИ может повредить электронику транспортного средства, вызвать остановку двигателя автомобиля, повредить систему зажигания и вызвать другие неисправности.

Один из способов защитить транспортное средство — это поставить его в клетку Фарадея, достаточно большую для его удержания, и выключить двигатель. Однако для этого потребуется какое-то предварительное предупреждение. Это возможно в случае солнечной вспышки, поскольку обнаружение на большом расстоянии может позволить людям подготовиться к прибытию в течение нескольких часов. Однако этот тип заблаговременного предупреждения может быть менее вероятным в случае ядерной ЭМИ. Еще одна вещь, которую могут сделать люди, — это использовать более старый автомобиль вместо более нового. Старые автомобили много лет назад не зависели от работы электронных систем.

Таким образом, вместо того, чтобы иметь новую машину в своем гараже, у него был бы старый грузовик. Это более или менее устраняет электронные устройства из уравнения. Вы также можете выбрать что-то, что использует дизельный двигатель. Преимущество этого — в транспортном средстве, в котором не используется система зажигания, поэтому у EMP есть одна вещь, которая может быть повреждена.

У дизельных транспортных средств также есть дополнительное преимущество использования двигателя внутреннего сгорания, который лучше справляется с импровизированным или элементарным топливом. Если ПУОС повредил электронику, используемую станциями техобслуживания и другими хранилищами топлива, дизельный двигатель может предложить дополнительную и полезную гибкость.

Герб доминиона

Еще тесты

Подземные испытания

В последнее время между странами существует договор, регламентирующий ядерные испытания и предписывающий проводить их только под землей, что позволяет минимизировать загрязнения и непригодные для жизни площади, образующиеся вокруг полигонов.

Испытания под землей считаются наименее опасными, так как действие всех поражающих факторов приходится на породы. Увидеть светящиеся вспышки или грибовидное облако при этом невозможно, от него остается только столб пыли. Но ударная волна приводит к землетрясению и обрушению грунта. Обычно это используется в мирных целях, для решения народохозяйственных задач. Например, так можно разрушать горные массивы или образовывать искусственные водоемы.

Первый в мире бомбардировщик «Илья Муромец»

Источники

  1. Убежища гражданской обороны: Конструкция и расчёт/ В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; Под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — С. 4—5. ISBN 5-274-00515-2
  2. Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 23.
  3. Действие ядерного взрыва. Сборник переводов. М., «Мир», 1971. — С. 85
  4. Морозов, В. И. и др. Приспособление подвалов существующих зданий под убежища, М., 1966. С. 72
  5. Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 53
  6. Атаманюк В.Г., Ширшев Л.Г. Акимов Н.И. Гражданская оборона: Учебник для втузов / Под ред. Д.И.Михайдова. — М.: Высш. шк., 1986. — С. 39. — 207 с.

  7. Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 52
  8. Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 79, 81.

9. Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него. – М.: Инфра-Инженерия, 2018 — 508 с.: ил.

Сущность проблемы

Электромагнитное излучение или электромагнитные волны представляют собой поток заряженных частиц, обусловленный электромагнитным полем (ЭМП). Такое излучение не вызывает ионизации на своем пути, как радиация, но это не значит, что защита от неионизирующих электромагнитных потоков не нужна. Оно распространяется достаточно далеко от своих источников, постепенно затухая, и способно оказать значительное влияние на человеческий организм, с чем и следует разобраться.

Бессонница и депрессия

В результате негативного воздействия внешних электромагнитных источников могут возникнуть следующие проблемы:

  1. С нервной системой. Это бессонница, депрессия, головные боли, ухудшение памяти и восприятия информации (синдром ослабленного познания), нарушение равновесия, головокружение, ухудшение ориентации (синдром атаксии), боли в мышцах, мышечная слабость.
  2. С сердечно-сосудистой системой. Это дистония нейроциркуляторного типа, нестабильность сердечного ритма и артериального давления, болезненные ощущения в области сердца, нарушения в составе крови.
  3. С иммунная системой. Это угнетение Т-лимфоцитов, ухудшение иммунитета.
  4. С эндокринной системой. Это повышение уровня адреналина в крови, изменение свертываемости крови, различные дисфункции органов системы.
  5. С половой системой. Это ухудшение сперматогенеза, замедление развития плода у беременных женщин, ухудшение процесса лактации, осложнение беременности, риск рождения ребенка с патологиями вплоть до уродства.
  6. С энергетической системой. Это разбалансировка всей системы и патогенное ее изменение.

Нормы электромагнитного излучения

Такие опасные последствия указывают на то, что защита от электромагнитных полей и излучений необходима человеческому организму. Для того чтобы обезопасить человека от вредных воздействий, в России действуют жесткие нормы, устанавливающие предельные уровни электромагнитных излучений, а именно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях, на рабочих местах», санитарно-эпидемиологические правила и нормативы, а также гигиенические нормативы ГДР(ПДУ) 5803-91 (ДНАОП 0.03-3.22-91). Предельно допустимая доза электромагнитного излучения для человека составляет 0,2 мкТл.

Защита от ЭМИ оружия

Существует много эффективных средств защиты радаров и электроники от ЭМИ-оружия.

Меры применяются трех категорий:

  1. блокирование входа части энергии электромагнитного импульса
  2. подавление индукционных токов внутри электрических схем быстрым их размыканием
  3. использование электронных устройств нечувствительных к ЭМИ

Средства сброса части или всех энергии ЭМИ на входе в устройство

Как средства защиты от ЭМИ на АФАР радары накладывают «клетки Фарадея» отсекающей ЭМИ за пределами их частот. Для внутренней электроники применяются просто железные экраны.

Кроме этого может быть использован разрядник, как средство сброса энергии сразу за антенной.

Средства размыкания цепей при возникновении сильных индукционных токов

Для размыкания цепей внутренней электроники при возникновении сильных индукционных токов от ЭМИ используют

  • стабилитроны — полупроводниковые диоды рассчитанные на работу в режиме пробоя с резким повышением сопротивления;
  • варисторы обладают свойством резко уменьшать своё сопротивление с десятков и (или) тысяч Ом — до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины.

Электронные устройства, нечувствительные к ЭМИ

Часть электронных устройств неуязвимы для ЭМИ и применяются как средства борьбы с ним:

  • Использование оптического кабеля для передачи сигнала.
  • Использование LTCC-технологий в связи с тем, что разогревом силикатной платы с проводниками внутри до 1000 °С от индукционных токов или как-то иначе такое устройство невозможно повредить, так как собственно в ходе такого «совместного обжига» LTCC-панель и была получена технологически. Следует иметь в виду, что это касается защиты от экстремального нагрева только антенн и проводников, реализованных в виде «дорожек на стеклянной печатной плате», которую из себя представляет LTCC-панель. Напаянные на панель чипы должны иметь защиту корпуса из металла и разрядники, стабилитроны и варисторы на входе сигнала от антенн.

Ссылки

Посол Индии рассказал о ходе переговоров о закупке у России МиГ-29 и Су-30

В чем заключается вредное воздействие статического электричества в промышленности?

Заряды статического электричества могут возникнуть при соприкосновении или трении твердых материалов, при размельчении или пересыпании однородных и разнородных непроводящих материалов, при разбрызгивании диэлектрических жидкостей, при транспортировке сыпучих веществ и жидкостей по трубопроводам и др.

Вредное воздействие статического электричества проявляется в возможности пожаров и взрывов от электростатических зарядов, технологических помех, нарушающих нормальный ход того или иного технологического процесса, физиологического воздействия на организм человека.

Человек может подвергаться длительному процессу электризации при контактировании с различного рода предметами, выполненными из материалов с высокими диэлектрическими свойствами. К числу подобных источников электризации относятся: полы, ковры, ковровые дорожки из синтетических и других электронепроводящих материалов.

Действие статического электричества на человека смертельной опасности не представляет, поскольку сила тока составляет небольшую величину. Искровый разряд статического электричества человек ощущает, как толчок или судорогу. При внезапном уколе может возникнуть испуг, и вследствие рефлекторных движений человек может сделать непроизвольно движения, приводящие к падению с высоты, попаданию в неогражденные части машин и др. Длительное воздействие статического электричества неблагоприятно отражается на состоянии здоровья.

Вызываемые статическим электричеством неприятные ощущения могут явиться этиологическим фактором неврастенического синдрома, головной боли, плохого сна, раздражительности, неприятных ощущений в области сердца и т. д.

Общие сведения

КамАЗ-4310 поступил в производство в 1981 году. Ведущие мосты грузовика имели несколько иной принцип действия, который отличался от предшествующих версий. Ключевые достоинства автомобиля – постоянный полный привод уже в базовой комплектации, четыре карданных вала, а также цельнометаллический кузов с откидными задними и боковыми бортами. Кроме того, в качестве альтернативы были доступны платформы с деревянной поверхностью, тентовым верхом и каркасом.

Обратим внимание, что грузовик способен перевозить практически любые грузы, так как это позволяет прочное ходовое шасси автомобиля. К тому же, вкупе с высокой выносливостью КаМАЗ-4310 становится практически незаменимым на бездорожье

В этом немалая заслуга колесной компоновке 6х6.

Каковы способы защиты от статического электричества?

Для предупреждения возможности возникновения опасных искровых разрядов с поверхности оборудования, а также с тела человека предусматривают следующие меры, обеспечивающие стекание возникающих зарядов статического электричества:

  • отвод зарядов, достигаемый заземлением оборудования и коммуникаций, а также обеспечение постоянного электрического контакта тела человека с заземлением;
  • отвод зарядов, обеспечиваемый уменьшением удельных объемных и поверхностных электрических сопротивлений. Известны способы увеличения поверхностной и объемной электропроводности для твердых и жидких диэлектриков:
    • увлажнение воздуха до 65—75%, если это допустимо по условиям технологического процесса;
    • химическая обработка поверхности электропроводными покрытиями;
    • нанесение на поверхность антистатических веществ, добавление антистатических присадок в горючие диэлектрические жидкости;
    • нейтрализация зарядов, достигаемая применением различных типов нейтрализаторов (индукционных; высоковольтных, высокочастотных, радиоактивных и др.).

Варианты

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector