Технология гпврд — как создавали гиперзвуковой двигатель
Содержание:
- Содержание
- Шаг 4: Подготовка торцевых колец КС
- Подводное ружье гидропневматическое
- Подготовительный процесс
- От крылатой ракеты Буревеснтик до космического корабля с ядерным двигателем
- Галерея
- Классы реактивных двигателей:
- История
- Строение и принцип действия ПуВРД
- Примечания
- Шаг 7: Собираем всё вместе
- Примечания
- Примечания[ | ]
- Тяга ПВРД
- Гиперзвуковой ПВРД
- Прямоточные воздушно-реактивные двигатели
- Особенности ПуВРД
- Типы ПуВРД
- Сверхзвуковые ПВРД
- Исторические факты
- Крепление
- Принцип работы турбовентиляторного двигателя
- Отклоняемый вектор тяги
Содержание
Шаг 4: Подготовка торцевых колец КС
Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.
Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).
Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.
12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.
Подводное ружье гидропневматическое
Мощное, но конструктивно сложное ружье для подводной охоты. При его производстве должны использоваться исключительно высококачественные материалы, ибо оно очень прихотливое.
Конструкция этого устройства состоит из:
- Ствола;
- Надульника;
- Ресивера;
- Поршня для разделения гидравлической и пневматической полостей;
- Рукоятки, в которой находится спусковой механизм;
- Гарпуна.
Гидропневматические ружья обладают некоторыми достоинствами. С их помощью можно заниматься охотой даже ночью в водоемах, которые полностью заросли камышом. Кроме того, таким устройством можно стрелять совершенно бесшумно.
Подготовительный процесс
Прежде чем приступить к сооружению пульсирующего реактивного двигателя своими руками, необходимо очистить листовые металлические заготовки от ржавчины и пыли. Для этого вполне подойдет стандартная шлифовальная машинка. Побеспокойтесь о безопасности – наденьте перчатки, так как края листов острые и изобилуют заусенцами.
Перед началом основных работ нужно подготовить чертежи и картонные шаблоны деталей в натуральную величину. Для получения точной конфигурации и размеров контуры обводят перманентным маркером. Крайне не рекомендуется вырезать развертки при помощи сварочного аппарата, каким бы современным он ни был. Дело в том, что полученные таким способом детали очень плохо свариваются по краям. Желательно для этой цели использовать электрические ножницы по металлу, поскольку в ручном варианте имеется большой риск загибания краев заготовок. Резать нужно аккуратно, надежно зафиксировав обрабатываемый шаблон струбциной или другим подходящим способом.
От крылатой ракеты Буревеснтик до космического корабля с ядерным двигателем
Но главным выводом следует считать перспективы использования этой технологии в космонавтике. Если крылатая ракета с ядерной силовой установкой реализована и действует, то нет никаких преград для реализации межпланетных космических кораблей на ядерной тяге. А это совсем другая космонавтика! Месяц до Марса вместо года – это как минимум, а в перспективе – еще быстрее. А это открывает реальные перспективы для пилотируемых полетов в дальний космос и колонизации планет.
Диаметр «Калибра» составляет 0,533 м при длине ракеты 6,2-8,22 м в разных модификациях.
Галерея
Классы реактивных двигателей:
Все реактивные двигатели подразделяют на 2 класса:
- Воздушно-реактивные – тепловые двигатели, использующие энергию окисления воздуха, получаемого из атмосферы. В этих двигателях рабочее тело представлено смесью продуктов горения с остальными элементами отобранного воздуха.
- Ракетные – двигатели, которые на борту содержат все необходимые компоненты и способны работать даже в безвоздушном пространстве.
Прямоточный воздушно-реактивный двигатель – самый простой в классе ВРД по конструкции. Требуемое для работы устройства повышение давления образуется путем торможения встречного воздушного потока.
Рабочий процесс ПВРД можно кратко описать следующим образом:
Во входное устройство двигателя поступает воздух со скоростью полета, кинетическая его энергия преобразуется во внутреннюю, давление и температура воздуха повышаются. На входе в камеру сгорания и по всей длине проточной части наблюдается максимальное давление.
- Нагревание сжатого воздуха в камере сгорания происходит путем окисления подаваемого воздуха, при этом внутренняя энергия рабочего тела увеличивается.
- Далее поток сужается в сопле, рабочее тело достигает звуковой скорости, а вновь при расширении – сверхзвуковой. За счет того, что рабочее тело движется со скоростью, превышающей скорость встречного потока, внутри создается реактивная тяга.
В конструктивном плане ПВРД является предельно простым устройством. В составе двигателя есть камера сгорания, внутрь которой горючее поступает из топливных форсунок, а воздух – из диффузора. Камера сгорания заканчивается входом в сопло, которое является суживающейся-расширяющимся.
Развитие технологии смесевого твердого топлива повлекло за собой использование этого горючего в ПВРД. В камере сгорания располагается топливная шашка с центральным продольным каналом. Проходя по каналу, рабочее тело постепенно окисляет поверхность топлива и нагревается само. Применение твердого горючего еще более упрощает состоящую конструкцию двигателя: топливная система становится ненужной.
Смесевое топливо по своему составу в ПВРД отличается от применяемого в РДТТ. Если в ракетном двигателе большую часть состава топлива занимает окислитель, то в ПВРД он используется в небольших пропорциях для активирования процесса горения.
Наполнитель смесевого топлива ПВРД преимущественно состоит из мелкодисперсного порошка бериллия, магния или алюминия. Их теплота окисления существенно превосходит теплоту сгорания углеводородного горючего. В качестве примера твердотопливного ПВРД можно привести маршевый двигатель крылатой противокорабельной ракеты «П-270 Москит».
Тяга ПВРД зависит от скорости полета и определяется исходя из влияния нескольких факторов:
- Чем больше показатель скорости полета, тем большим будет расход воздуха, проходящего через тракт двигателя, соответственно, большее количество кислорода будет проникать в камеру сгорания, что увеличивает расход топлива, тепловую и механическую мощность мотора.
- Чем больше расход воздуха сквозь тракт двигателя, тем выше будет создаваемая мотором тяга. Однако существует некий предел, расход воздуха сквозь тракт мотора не может увеличиваться неограниченно.
- При возрастании скорости полета увеличивается уровень давления в камере сгорания. Вследствие этого увеличивается термический КПД двигателя.
- Чем больше разница между скоростью полета аппарата и скоростью прохождения реактивной струи, тем больше тяга двигателя.
Зависимость тяги прямоточного воздушно-реактивного двигателя от скорости полета можно представить следующим образом: до того момента, пока скорость полета намного ниже скорости прохождения реактивной струи, тяга будет увеличиваться вместе с ростом скорости полета. Когда скорость полета приближается к скорости реактивной струи, тяга начинает падать, миновав определенный максимум, при котором наблюдается оптимальная скорость полета.
В зависимости от скорости полета выделяют такие категории ПВРД:
- дозвуковые;
- сверхзвуковые;
- гиперзвуковые.
Каждая из групп имеет свои отличительные особенности конструкции.
История
— первый пилотируемый аппарат с маршевым ПВРД (первый полёт — 19 ноября 1946). Музей авиации и космонавтики в Ле-Бурже
В 1913 году француз получил патент на прямоточный воздушно-реактивный двигатель.
ПВРД привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на гиперзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-х годах с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).
В 1937 году французский конструктор получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт пилотируемого аппарата с маршевым ПВРД, . Далее в течение 10 лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые и , а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление турбореактивных двигателей представлялось более перспективным.
Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга при неподвижности, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а следовательно, дешевизне и надёжности. Начиная с 1950-х годов, в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.
В СССР с 1954 по 1960 год в ОКБ-301 под руководством генерального конструктора С. А. Лавочкина, разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше М = 3 и на высоте 17 км. В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Смерть С. А. Лавочкина в 1960 году окончательно похоронила проект.
Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 «Оникс», П-270 «Москит».
Строение и принцип действия ПуВРД
Устройство ПуВРД
Пульсирующий воздушно-реактивный двигатель – это полый канал, открытый с двух сторон. С одной стороны – на входе – установлен воздухозаборник, за ним – тяговый узел с клапанами, дальше расположена одна или несколько камер сгорания и сопло, через которое выходит реактивный поток. Поскольку работа двигателя циклична, можно выделить основные ее такты:
- такт впуска, во время которого входной клапан открывается, и в камеру сгорания под действием разряжения в ней попадает воздух. В это же время через форсунки впрыскивается топливо, в результате чего образуется топливный заряд;
- полученный топливный заряд воспламеняется от искры свечи зажигания, в процессе горения образуются газы с высоким давлением, под действием которого закрывается впускной клапан;
- при закрытом клапане продукты сгорания выходят через сопло, обеспечивая реактивную тягу. Вместе с тем в камере сгорания при выходе отработанных газов образуется разряжение, входной клапан автоматически открывается и впускает во внутрь новую порцию воздуха.
Входной клапан двигателя может иметь разные конструкции и внешний вид. Как вариант, он может быть выполнен в виде жалюзи – прямоугольных пластин, закрепленных на раме, которые под действием перепада давления открываются и закрываются. Другая конструкция имеет форму цветка с металлическими «лепестками», расположенными по кругу. Первый вариант более эффективный, зато второй более компактный и может использоваться на небольших по размеру конструкциях, например, при авиамоделизме.
Подача топлива осуществляется форсунками, которые имеют обратный клапан. Когда давление в камере сгорания снижается, подается порция топлива, когда же давление увеличивается за счет горения и расширения газов, подача топлива прекращается. В некоторых случаях, например на маломощных моторах от авиамоделей, форсунок может и не быть, а система подачи топлива при этом напоминает карбюраторный двигатель.
Свеча зажигания расположена в камере сгорания. Она создает серию разрядов, и когда концентрация топлива в смеси достигает нужного значения, топливный заряд воспламеняется. Поскольку двигатель имеет небольшие размеры, его стенки, выполненные из стали, в процессе работы быстро нагреваются и могут поджигать топливную смесь не хуже свечи.
Нетрудно понять, что для запуска ПуВРД нужен первоначальный «толчок», при котором первая порция воздуха попадет в камеру сгорания, то есть такие двигатели нуждаются в предварительном разгоне.
Примечания
- Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
- Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
- ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
- ↑ Олег Макаров. Огненный пульс // Популярная механика. — 2017. — № 11. — С. 122-126.
- Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
- Рольф Вилле «Постройка летающих моделей-копий», перевод с немецкого В. Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille «Flufahige, vorbildgetrene Nachbauten», Transpress VEB Verlag fur Verkehrswessen), ББК 75.725, глава 9 «Размещение двигателя на модели» страницы 114-118
Шаг 7: Собираем всё вместе
Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка должна быть похожа на вторую картинку ниже.
Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине
Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.
Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.
Примечания
- Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
- Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
- ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
- ↑ Олег Макаров. Огненный пульс // Популярная механика. — 2017. — № 11. — С. 122-126.
- Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
- Рольф Вилле «Постройка летающих моделей-копий», перевод с немецкого В. Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille «Flufahige, vorbildgetrene Nachbauten», Transpress VEB Verlag fur Verkehrswessen), ББК 75.725, глава 9 «Размещение двигателя на модели» страницы 114-118
Примечания[ | ]
- Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
- В России испытали пульсирующий детонационный двигатель
- Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
- Устройство и работу серийного клапанного ПуВРД модели «ДайнаДжет» можно подробно увидеть в видеофильме.
- См. видео о запуске V-1 с катапульты.
- ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
- Иллюстрированное описание нескольких конструкций бесклапанных ПуВРД (на английском)
- Видеозаписи испытаний экспериментальных детонационных ПуВРД.
- ↑ 12Олег Макаров. Огненный пульс // Популярная механика. — 2020. — № 11. — С. 122-126.
- Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
- Рольф Вилле «Постройка летающих моделей-копий», перевод с немецкого В. Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille «Flufahige, vorbildgetrene Nachbauten», Transpress VEB Verlag fur Verkehrswessen) , ББК 75.725, глава 9 «Размещение двигателя на модели» страницы 114-118
Тяга ПВРД
Сила тяги ПВРД определяется выражением
P=dmadt⋅(ve−v)+dmfdt⋅ve{\displaystyle P={\frac {dm_{a}}{dt}}\cdot (v_{e}-v)+{\frac {dm_{f}}{dt}}\cdot v_{e}}(3)
Где P{\displaystyle P} — сила тяги, v{\displaystyle v} — скорость полёта, ve{\displaystyle v_{e}} — скорость реактивной струи относительно двигателя, dmfdt{\displaystyle {\frac {dm_{f}}{dt}}} — секундный расход горючего.
Секундный расход воздуха:
- dmadt=ρ⋅dVdt=ρ⋅S⋅dldt=ρ⋅S⋅v{\displaystyle {\frac {dm_{a}}{dt}}=\rho \cdot {\frac {dV}{dt}}=\rho \cdot S\cdot {\frac {dl}{dt}}=\rho \cdot S\cdot v},
где
- ρ{\displaystyle \rho } — плотность воздуха (зависит от высоты),
- dVdt{\displaystyle {\frac {dV}{dt}}} — объём воздуха, который поступает в воздухозаборник ПВРД за единицу времени,
- S{\displaystyle S} — площадь сечения входа воздухозаборника,
- v{\displaystyle v} — скорость полёта.
Секундный расход массы рабочего тела для идеального случая, когда горючее полностью сгорает и полностью используется кислород воздуха в процессе горения, вычисляется с помощью стехиометрического коэффициента:
- dmdt=dmadt+dmfdt=dmadt+1L⋅dmadt=dmadt⋅(1+1L){\displaystyle {\frac {dm}{dt}}={\frac {dm_{a}}{dt}}+{\frac {dm_{f}}{dt}}={\frac {dm_{a}}{dt}}+{\frac {1}{L}}\cdot {\frac {dm_{a}}{dt}}={\frac {dm_{a}}{dt}}\cdot (1+{\frac {1}{L}})},
где
- dmadt{\displaystyle {\frac {dm_{a}}{dt}}} — секундный расход воздуха,
- dmfdt{\displaystyle {\frac {dm_{f}}{dt}}} — секундный расход горючего,
- L{\displaystyle L} — стехиометрический коэффициент смеси горючего и воздуха.
Гиперзвуковой ПВРД
Основная статья: Гиперзвуковой прямоточный воздушно-реактивный двигатель
Экспериментальный гиперзвуковой летательный аппарат X-43 (рисунок художника)
Иллюстрация газодинамических процессов в плоском ГПВРД с соплом Сжатие воздуха происходит в двух скачках уплотнения: внешнем, образованным у носового окончания аппарата, и внутреннем — у передней кромки нижней стенки двигателя. Оба скачка — косые, и скорость потока остаётся сверхзвуковой.
Гиперзвуковым ПВРД (ГПВРД, англоязычный термин — scramjet) называется ПВРД, работающий на скоростях полёта свыше М = 5 (верхний предел точно не устанавливается).
На начало XXI века этот тип двигателя является экспериментальным: не существует ни одного образца, прошедшего лётные испытания, подтвердившие практическую целесообразность его серийного производства.
Торможение потока воздуха во входном устройстве ГПВРД происходит лишь частично, так что на протяжении всего остального тракта движение рабочего тела остаётся сверхзвуковым. При этом бо́льшая часть исходной кинетической энергии потока сохраняется, а температура после сжатия относительно низка, что позволяет сообщить рабочему телу значительное количество тепла. Проточная часть ГПВРД расширяется на всём её протяжении после входного устройства. Горючее вводится в сверхзвуковой поток со стенок проточной части двигателя. За счёт сжигания горючего в сверхзвуковом потоке рабочее тело нагревается, расширяется и ускоряется, так что скорость его истечения превышает скорость полёта.
Двигатель предназначен для полётов в стратосфере. Возможное назначение летательного аппарата с ГПВРД — низшая ступень многоразового носителя космических аппаратов.
Организация горения топлива в сверхзвуковом потоке составляет одну из главных проблем создания ГПВРД.
Существует несколько программ разработок ГПВРД в разных странах, все — в стадии теоретических изысканий или предпроектных экспериментов.
Прямоточные воздушно-реактивные двигатели
Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.
Источник
Особенности ПуВРД
Главной особенностью ПуВРД, которая отличает его от его «ближайших родственников» турбореактивного (ТРД) и прямоточного воздушно-реактивного двигателя (ПВРД), является наличие впускного клапана перед камерой сгорания. Именно этот клапан не пропускает обратно продукты сгорания, определяя их направление движения через сопло. В других типах моторов нет необходимости в клапанах – там воздух поступает в камеру сгорания уже под давлением за счет предварительно сжатия. Этот, на первый взгляд, незначительный нюанс играет огромную роль в работе ПуВРД с точки зрения термодинамики.
Второе отличие от ТРД – это цикличность работы. Известно, что в ТРД процесс сжигания топлива проходит практически беспрерывно, что и обеспечивает ровную и равномерную реактивную тягу. ПуВРД работает циклично, создавая колебания внутри конструкции. Для достижения максимальной амплитуды необходимо синхронизировать колебания всех элементов, чего можно добиться путем подбора нужной длины сопла.
В отличие от прямоточного воздушно реактивного двигателя пульсирующий воздушно реактивный двигатель может работать даже на низких скоростях и находясь в неподвижном положении, то есть когда нет встречного потока воздуха. Правда, его работа в таком режиме не способна обеспечить величину реактивной тяги, необходимой для пуска, поэтому самолеты и ракеты, оснащенные ПуВРД, нуждаются в первоначальном ускорении.
Маленькое видео запуски и работы ПуВРД.
Типы ПуВРД
Кроме обычного ПуВРД в виде прямолинейного канала с входным клапаном, что описывались выше, есть и его разновидности: бесклапанный и детонационный.
Бесклапанный ПуВРД, как понятно по его названию, не имеет входного клапана. Причиной его появления и использования стал тот факт, что клапан является довольно уязвимой деталью, которая очень быстро выходит из строя. В этом же варианте «слабое звено» устранено, поэтому и срок службы мотора продлен. Конструкция бесклапанного ПуВРД имеет форму буквы U с концами, направленными назад по ходу реактивной тяги. Один канал длиннее, он «отвечает» за тягу; второй короче, по нему поступает воздух в камеру сгорания, а при горении и расширении рабочих газов часть их выходит через этот канал. Такая конструкция позволяет осуществлять лучшую вентиляцию камеры сгорания, не допускает утечки топливного заряда через входной клапан и создает дополнительную, пусть и незначительную, тягу.
без клаппаный вариант исполнения ПуВРД
без клапанный U-образный ПуРВД
Детонационный ПуВРД предполагает сжигание топливного заряда в режиме детонации. Детонация предусматривает резкое повышение давления продуктов горения в камере сгорания при постоянном объеме, а сам объем увеличивается уже при движении газов по соплу. В этом случае повышается термический КПД двигателя в сравнении не только с обычным ПуВРД, но и с любым другим двигателем. На данный момент этот тип моторов не используется, а находится на стадии разработок и исследований.
детонационный ПуРВД
Сверхзвуковые ПВРД
Сверхзвуковые ПВРД рассчитаны на осуществление полетов в диапазоне скоростей 1 < M < 5.
Торможение газового сверхзвукового потока всегда выполняется разрывно, при этом образуется ударная волна, которая называется скачком уплотнения. На дистанции ударной волны процесс сжатия газа не является изоэнтропийным. Следовательно, наблюдаются потери механической энергии, уровень увеличения давления в нем меньший, нежели в изоэнтропийном процессе. Чем мощнее будет скачок уплотнения, тем больше изменится скорость потока на фронте, соответственно, больше потери давления, иногда достигающие 50%.
Для того чтобы минимизировать потери давления, организуется сжатие не в одном, а нескольких скачках уплотнения с меньшей интенсивностью. После каждого из таких скачков наблюдается снижение скорости потока, которая остается сверхзвуковой. Это достигается, если фронт скачков расположен под углом к направлению скорости потока. Параметры потока в интервалах между скачками остаются постоянными.
В последнем скачке скорость достигает дозвукового показателя, дальнейшие процессы торможения и сжатия воздуха происходят непрерывно в канале диффузора.
Если входное устройство мотора расположено в области невозмущенного потока (например, впереди летательного аппарата на носовом окончании или на достаточном отдалении от фюзеляжа на крыльевой консоли), оно выполняется асимметричным и комплектуется центральным телом – острым длинным «конусом», выходящим из обечайки. Центральное тело предназначено для создания во встречном воздушном потоке косых скачков уплотнения, которые обеспечивают сжатие и торможение воздуха до момента его поступления в специальный канал входного устройства. Представленные входные устройства получили название устройств конического течения, воздух внутри них циркулирует, образуя коническую форму.
Центральное коническое тело может быть оснащено механическим приводом, который позволяет ему двигаться вдоль оси двигателя и оптимизировать торможение потока воздуха на разных скоростях полета. Данные входные устройства называются регулируемыми.
При фиксации двигателя под крылом или снизу фюзеляжа, то есть в области аэродинамического влияния элементов конструкции самолета, используют входные устройства плоской формы двухмерного течения. Они не оснащаются центральным телом и имеют поперечное прямоугольное сечение. Их еще называют устройствами смешанного или внутреннего сжатия, поскольку внешнее сжатие здесь имеет место только при скачках уплотнения, образующихся у передней кромки крыла или носового окончания летательного аппарата. Входные регулируемые устройства прямоугольного сечения способны менять положение клиньев внутри канала.
В сверхзвуковом скоростном диапазоне ПВРД более эффективен, нежели в дозвуковом. К примеру, на скорости полета М=3 степень увеличения давления составляет 36,7, что приближается к показателю турбореактивных двигателей, а расчетный идеальный КПД достигает 64,3 %. На практике эти показатели меньшие, но на скоростях в диапазоне М=3-5 СПВРД по эффективности превосходят все существующие типы ВРД.
При температуре невозмущенного воздушного потока 273°K и скорости самолета М=5 температура рабочего заторможенного тела равна 1638°К, при скорости М=6 — 2238°К, а в реальном полете с учетом скачков уплотнения и действия силы трения становится еще выше.
Дальнейшее нагревание рабочего тела является проблематичным из-за термической неустойчивости конструкционных материалов, входящих в состав двигателя. Поэтому предельной для СПВРД считается скорость, равная М=5.
Исторические факты
Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.
Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.
Крепление
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Отклоняемый вектор тяги
Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.