Прямоточный реактивный двигатель своими руками чертежи
Содержание:
- Изготовление рабочих колес
- Шаг 8: Изготавливаем рассеиватель
- Как вычесть из даты дни, месяцы, года, века?
- Как сделать поршень с шатуном
- Шаг 1: Прорабатываем базовую конструкцию двигателя
- Турбореактивный двигатель своими руками
- Принимают ли в училище девочек?
- Шаг 8: Изготавливаем рассеиватель
- Напиши централизованное тестирование
- Гербы и эмблемы Вооружённых СилПарашютно-десантные, десантно-штурмовые полки
- Рабочее колесо
- 3D-печать матриц колеса турбины и NGV
- Принцип работы турбовентиляторного двигателя
- Кто присваивает воинские звания военнослужащим до полковника и капитана 1 ранга включительно?
- Таможенные ограничения
- Быть или не быть?
- Шаг 4: Подготовка торцевых колец КС
- Сколько нужно времени чтобы стать генералом?
- Разгадки тайн поступления
- Изготовление рабочих колес
- Шаг 3: Вычисляем размер камеры сгорания
- Как сделать реактивный мини двигатель своими руками в домашних условиях – самодельная схема устройства
- Габаритные размеры
- Достоинства и недостатки ПуВРД, сфера применения
- Что в итоге?
Изготовление рабочих колес
В этой конструкции используются 2 вида стальных колес. А именно: турбинное колесо и колесо NGV. Для их изготовления используют нержавеющую сталь. Если бы они были изготовлены из легкого или оцинкованного материала, их едва хватило бы, чтобы показать, как работает двигатель.
Вы можете вырезать диски из металлического листа, а затем просверлить отверстие в центре, но, скорее всего, вы не попадете в центр. Поэтом просверлите отверстие в листе металла, а затем приклеить бумажный шаблон, чтобы отверстие в металле и место для отверстия в бумажном шаблоне совпали. Вырежьте металл по шаблону.
Просверлите вспомогательные отверстия
(Обратите внимание, что центральные отверстия уже должны быть просверлены. Также обратите внимание, что колесо турбины имеет только центральное отверстие.)
Также неплохо бы оставить немного припуска при резке металла, а затем обточить кромку дисков, используя сверлильный станок и точило.На этом этапе может быть лучше сделать несколько резервных дисков. Далее будет понятно почему.
Шаг 8: Изготавливаем рассеиватель
Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.
Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.
- Основные отверстия подают воздух, который смешивается с топливом.
- Вторичные отверстия подают воздух, который завершает процесс сгорания.
- Третичные отверстия обеспечивают охлаждения газов до того, как они покинут камеру, таким образом, чтобы они не перегревали турбинных лопаток.
Чтобы сделать процесс расчета отверстия легким, ниже представлена программа, что будет делать работу за вас.
Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.
Как вычесть из даты дни, месяцы, года, века?
Как сделать поршень с шатуном
Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.
Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.
Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).
Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.
Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.
Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.
Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.
Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника — 4 мм.
Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную спиртовую горелку
илипримус Испытание финальной версии самодельного парового двигателя
Поскольку нефтепродукты постоянно растут в цене (ведь нефти свойственно заканчиваться), стремление к экономии на горючем вполне понятно, и мини-двигатель
мог бы стать неплохим решением.
Шаг 1: Прорабатываем базовую конструкцию двигателя
Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.
Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.
Турбореактивный двигатель своими руками
Мало кто знает о том, что турбореактивный двигатель можно собрать собственными руками самостоятельно. Принцип работы такого устройства заключается в проталкивании огромного количества воздуха за короткий промежуток времени, любой подобный двигатель а если быть совсем точным — турбина, основывается на законе Ньютона. Внутри каждого подобного экземпляра находится как правило компрессор и отсек сгорания топлива который нужен для того чтобы разогреть входящий поток воздуха начиная от 1500 и до 2000 градусов, зависит от конкретной модели двигателя. Для того чтобы конструкция не расплавилась используется специальный тип металла который выдерживает подобные температуры.
Топливо по каналам проходит в отсек предназначенный для сгорания топлива, где по специальным отверстиям подается в сам двигатель тем самым совершая впрыск топлива. В этом отсеке двигателя после того как воздух нагрелся до 1500 градусов он поступает дальше в выходной вал который визуально напоминает из себя совокупность нескольких вентиляторов соединенных последовательно друг за другом разного диаметра. Проходя через них воздух охлаждается прежде чем будет выброшен из турбины.
Самое интересное в этом, что турбореактивный двигатель можно собрать на базе обычной турбины от автомобиля, диапазон наддува которой начинается от 2.5 бар. Взяв более менее большую турбину от авто можно собрать турбореактивный двигатель своими руками. Для этого вам потребуется лишь знания проектирования турбореактивного двигателя, чертежи которого можно найти в свободном доступе. Работы которые предстоит проделать прежде чем у вас получится нечто похожее на настоящий реактивный двигатель можно разделить на несколько частей. Самое первое что придется сделать это отломать лопасти которые есть в обычной турбине и придать им нужную форму, потому как поток воздуха в реактивной турбине намного больше нежели в турбине автомобиля. Далее придется вручную сделать камеру сгорания для впрыска топлива по каналам. Модернизированные лопасти которые ранее были демонтированы нужно будет вставить в отсек для сгорания топлива.
По итогу всех действий у вас должно получится что-то похожее на это
По большому счету подобные манипуляции будут занимать основное время на проектирование частей турбины в нужном масштабе, это самое сложное с чем предстоит столкнутся. Все остальное сводится к тому чтобы подогнать нужные детали и совместить их между собой. Подробные чертежи есть в свободном доступе и при должных знаниях можно сделать реактивную турбину своими руками взяв обычную турбину от автомобиля. Это особенно актуально если учесть то, что найти хорошую турбину в свободной продаже за доступную цену практический не представляется возможным. Реактивный двигатель сделанный своими руками на базе турбины от авто может выдавать тягу до 9кг при хорошей качественной сборке.
На подобных двигателях летают беспилотники которые имеют вес порядка 60кг и более. Так-же подобный двигатель способен разогнать обычную машину до скорости 90-100км\ч а иногда и 130км\ч зависит от конкретной сборки и конкретной машины. Путем не сложных манипуляций такой двигатель на реактивной тяге можно доработать на повышение количества проталкиваемого воздуха тем самым увеличив мощность в несколько раз.
Источник
Принимают ли в училище девочек?
Шаг 8: Изготавливаем рассеиватель
Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.
Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.
- Основные отверстия подают воздух, который смешивается с топливом.
- Вторичные отверстия подают воздух, который завершает процесс сгорания.
- Третичные отверстия обеспечивают охлаждения газов до того, как они покинут камеру, таким образом, чтобы они не перегревали турбинных лопаток.
Чтобы сделать процесс расчета отверстия легким, ниже представлена программа, что будет делать работу за вас.
Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.
Напиши централизованное тестирование
Гербы и эмблемы Вооружённых СилПарашютно-десантные, десантно-штурмовые полки
Рабочее колесо
3D-печать матриц колеса турбины и NGV
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Кто присваивает воинские звания военнослужащим до полковника и капитана 1 ранга включительно?
Таможенные ограничения
Быть или не быть?
Наконец, проскальзывали сведения, что в следующем году решено приступить к строительству более крупных десантных кораблей, так что, возможно, флот все же ограничится только двумя судами. В любом случае проекты больших десантных кораблей нового поколения уже есть, так что можно рассчитывать, что это не пустопорожние разговоры. В любом случае «Грен» — проект интересный, и необходимость в нем действительно очень велика.
Специалистов решение военных о сокращении «поголовья» этих судов вообще приводит в тупик: ведь они рассчитывались в том числе и на возможность перевозки морской пехоты по внутренним рекам, что является крайне важной особенностью при проведении локальных операций. Двух кораблей для этого будет явно мало!
Шаг 4: Подготовка торцевых колец КС
Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.
Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).
Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.
12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.
Сколько нужно времени чтобы стать генералом?
Разгадки тайн поступления
Изготовление рабочих колес
В этой конструкции используются 2 вида стальных колес. А именно: турбинное колесо и колесо NGV. Для их изготовления используют нержавеющую сталь. Если бы они были изготовлены из легкого или оцинкованного материала, их едва хватило бы, чтобы показать, как работает двигатель.
Вы можете вырезать диски из металлического листа, а затем просверлить отверстие в центре, но, скорее всего, вы не попадете в центр. Поэтом просверлите отверстие в листе металла, а затем приклеить бумажный шаблон, чтобы отверстие в металле и место для отверстия в бумажном шаблоне совпали. Вырежьте металл по шаблону.
Просверлите вспомогательные отверстия
(Обратите внимание, что центральные отверстия уже должны быть просверлены. Также обратите внимание, что колесо турбины имеет только центральное отверстие.)
Также неплохо бы оставить немного припуска при резке металла, а затем обточить кромку дисков, используя сверлильный станок и точило.На этом этапе может быть лучше сделать несколько резервных дисков. Далее будет понятно почему.
Шаг 3: Вычисляем размер камеры сгорания
В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.
В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.
Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.
Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.
Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.
Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.
Как сделать реактивный мини двигатель своими руками в домашних условиях – самодельная схема устройства
Я собираю модель, имитирующую настоящий реактивный мини двигатель, даже если мой вариант электрический. На самом деле всё просто и каждый может построить реактивный двигатель своими руками в домашних условиях.
То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.
Основные части реактивного модельного двигателя:
- Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
- Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
- Реостат, такой же какой продаётся для настройки яркости лампочек.
- Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
- Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
- Амперметр или вольтметр.
- Потенциометр примерно на 50К.
- Катушка электромагнита из соленоида или любого другого источника.
- 4 диода.
- 2 или 4 постоянных магнита.
- Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
- Наполнитель кузовов для авто, для создания экстерьера.
- Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
- Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
- Белая, серебряная и черная краска.
Габаритные размеры
Достоинства и недостатки ПуВРД, сфера применения
Основными преимуществами пульсирующих воздушно-реактивных двигателей можно считать их простую конструкцию, что тянет за собой их невысокую стоимость. Именно эти качества и стали причиной их использования в качестве силовых агрегатов на военных ракетах, беспилотных самолетах, летающих мишенях, где важны не долговечность и сверхскорость, а возможность установки простого, легкого и дешевого мотора, способного развить нужную скорость и доставить объект к цели. Эти же качества принесли ПуВРД популярность среди любителей авиамоделизма. Легкие и компактные двигатели, которые при желании можно сделать самостоятельно или же купить по приемлемой цене, прекрасно подходят для моделей самолетов.
Недостатков у ПуВРД немало: повышенный уровень шума при работе, неэкономный расход топлива, неполное его сгорание, ограниченность по скорости, уязвимость некоторых конструктивных элементов, таки как входной клапан. Но, несмотря на такой внушительный перечень минусов, ПуВРД по-прежнему незаменимы в своей потребительской нише. Они – идеальный вариант для «одноразовых» целей, когда нет смысла устанавливать более эффективные, мощные и экономичные силовые агрегаты.
После того,как в журнале «Крылья Родины»(это было давно)появились чертежи ПуВРД конструкции чемпиона мира по скоростным моделям с таким двигателем Иванникова,у меня появилось страстное желание сделать такой. Правда, листового жаропрочного железа у меня не было. Решил делать из консервной банки. Намотал сварочный трансформатор для точечной сварки,изготовил соответствующие электроды и за дело. Токарному и слесарному делу обучен с юности. Клапанную решётку изготовил из дюраля,бак выклеил из стеклоткани,клапана и «рессоры» к ним сделал из листовой пружинной стали толщиной 0,15мм. Для охлаждения клапанов решил сделать бачёк под метанол или воду со своей распылительной трубкой и дозирующей иглой. Запускали(с друзьями) двигатель в помещении слесарного участка.Рёв был такой,что кто-то из ребят заметил,как стёкла на окнах прогнулись. Двигатель проработал меньше минуты,т.к. труба,изготовленная из консервной банки прогорела. Но адреналин был. Сейчас я могу представить на фото только «голову» ПуВРД: бак и клапанную решётку в сборе с клапанами. По прошествии определённого времени у меня появился небольшой листик жаропрочной стали толщиной 0,15мм.Я решил из него сварить маленький ПуВРД. Он запускался несколько раз. На моделях не использовался,хотя при весе 90гр. давал тягу 600гр. Однажды он произвёл «фурор»,когда в перерыве краевого совещания председателей комитетов ДОСААФ,для отвлечения от скуки совещания, он был запущен с помощью велосипедного насоса и самодельного высоковольтного блока на канцелярском столе. Смешно было смотреть, как толпа председателей,бросив перекур, ринулась к столу посмотреть на «диковину». Искровая свеча самодельная. Высоковольтный блок питался от батарейки КБС. Прерывание питания осуществлялось от прерывателя звонкового типа. В блоке используется бобина зажигания от мотоцикла . Есть у меня и ещё один ПуВРД,правда не доделанный, нет диффузора. Может-быть доделаю. Особенность этого двигателя та,что на выхлопной трубе есть поперечные кольца.Это сделано для того чтобы трубу не раздуло,т.к. толщина металла 0,15мм. Представляю несколько фотографий: : Сейчас эта техника напоминает мне о хороших былых временах. Вообщем-ностальгия.
Что в итоге?
А в итоге у нас плохо работающие движки. Основная их проблема — неполное сгорание топливной смеси (о последствиях этого я писал выше). Также подкачала и скорость горения. И вот тут-то всплывает злополучная надпись N — 13,6% и K2O — 46% на упаковке селитры, потому что, скорее всего калиевая селитра для удобрений нечистая, и оставшиеся 40,4% это какие-нибудь примеси, которые и стали причиной плохой работы двигателей.
Если вы смотрели недавнюю серию роликов Амперки Ракета против Лехи, то вы заметили, что они использовали химически чистую калиевую селитру. Благодаря ей у них прогорело все топливо, да и скорость горения была выше (2,85 мм/сек против моих 1-1,25 мм/сек). Ну и еще одним минусом самодельных движков является то, что неизвестна их тяга, а я в будущем хотел бы рассчитывать параметры полета ракеты.
По итогу могу сделать вывод, что на калиевой селитре для удобрений движок не построишь. В общем, на такой грустной ноте я закончил разработку своих движков, и стал искать тех, кто делает и продает готовые движки.