Внутреннее строение земли. мир удивительных тайн в одной статье

Содержание

От чего зависит состав и внутреннее устройство планеты

Естественно, что процесс образования планет Солнечной системы из газово-пылевого облака был длительным. Длительность этого процесса зависит от массы и размеров планет. Поэтому становится понятным, что Зем­ля, имеющая больший радиус, чем, скажем, Луна, Марс, Ве­нера и Меркурий, обладает большими энергетическими ре­сурсами и продолжает свое геологическое развитие до на­стоящего времени.

Луна, Марс, Венера и Меркурий свои энергетические ре­сурсы утратили и поэтому в настоящее время представляют собой геологически пассивные объекты. Этим выводом можно объяснить и то по­ложение, что Земля и Луна, сформированные примерно на одном удалении от Солнца, согласно законам распределе­ния вещества с одинаковыми магнитными свойствами — магнит­ной сепарации, должны иметь равные исходные концентра­ции элементов, в том числе и радиоактивных.

Луна, в отли­чие от Земли, находясь в состоянии тектонического покоя, может расходовать радиоактивное тепло только на подогрев своего тела, в то время как на Земле оно является также и источником тектонических преобразований.

При построении модели Марса следует исходить из тео­ретических расчетов о конденсации протопланетного обла­ка в зоне этой планеты в условиях, при которых часть желе­за замещалась серой, а магнезиальные силикаты обогаща­лись железом в большем количестве, чем при образовании Земли и Венеры. Это обстоятельство может свидетельство­вать о том, что ядро Марса слагается преимущественно сер­нистым железом; заметное количество железа присутствует и в его силикатных оболочках.

Внутреннее строение планет земной группы – Меркурия, Венеры, Земли и Марса

По разработанной модели Марса его кора имеет толщину до 100 км, значительно обо­гащенную железом мантию — толщиной около 2500 км и небольшое ядро. Ядро Марса со­ставляет 7% полной массы планеты. Анализ гравитационно­го поля Марса и интерпретация полученной сейсмограммы позволили отметить распределение утонений и утолщений коры в зависимости от форм рельефа: более толстая кора соответствует возвышенностям, а более тонкая — понижениям. В среднем толщина коры под континентами Марса составляет 43—45 км, местами увеличиваясь до 80— 100 км, а в пониженных участках — не превышает 10—30 км.

Меркурий имеет, вероятно, расплавленное железно-никелевое ядро и силикатную оболочку. Температура на границе ядра и силикатной оболочки оценивается 2000° С. Его ядро окружено силикатной мантией толщиной до 600 км, а кора планеты составляет толщину от 100 до 300 км. Размер ядра Меркурия аномален по сравнению с другими планетами “земной группы” – он составляет около 3/4 диаметра планеты, и примерно равен размерам Луны.

Венера также изучена весьма слабо , считается что её кора имеет толщину примерно в 16 км. Далее идет мантия, силикатная оболочка, простирающаяся на глубину порядка 3300 км до границы с железным ядром, значительно превосходящим по размеру земное, масса которого составляет около 1/4 массы планеты.
Поскольку собственное магнитное поле Венеры отсутствует, то считается, что ядро планеты находится в твёрдом состоянии.

О Плащанице

Планеты — гиганты

Существуют четыре газовых гиганта, располагающихся за орбитой Марса: Юпитер, Сатурн, Уран, Нептун. Они находятся во внешней Солнечной системе. Отличаются своей массивностью и газовым составом.

Планеты солнечной системы, масштаб не соблюден

Юпитер

Пятая по счёту от Солнца и крупнейшая планета нашей системы. Радиус её – 69912 км, она в 19 раз больше Земли и всего в 10 раз меньше Солнца. Год на Юпитере не самый долгий в солнечной системе, длится 4333 земных суток (неполных 12 лет). Его же собственные сутки имеют продолжительность около 10 земных часов. Точный состав поверхности планеты пока определить не удалось, однако известно, что криптон, аргон и ксенон имеются на Юпитере в гораздо больших количествах, чем на Солнце.

Юпитер, снимок зонда Вояджер-1

Существует мнение, что один из четырёх газовых гигантов на самом деле – несостоявшаяся звезда. В пользу этой теории говорит и самое большое количество спутников, которых у Юпитера много – целых 67. Чтобы представить себе их поведение на орбите планеты, нужна достаточно точная и чёткая модель солнечной системы. Самые крупные из них – Каллисто, Ганимед, Ио и Европа. При этом Ганимед является крупнейшим спутником планет во всей солнечной системе, радиус его составляет 2634 км, что на 8% превышает размер Меркурия, самой маленькой планеты нашей системы. Ио отличается тем, что является одним из трёх имеющих атмосферу спутников.

Сатурн

Вторая по размерам планета и шестая по счёту в Солнечной системе. В сравнении с остальными планетами, наиболее схожа с Солнцем составом химических элементов. Радиус поверхности равен 57350 км, год составляет 10 759 суток (почти 30 земных лет). Сутки здесь длятся немногим дольше, чем на Юпитере – 10,5 земных часов. Количеством спутников он ненамного отстал от своего соседа – 62 против 67. Самым крупным спутником Сатурна является Титан, так же, как и Ио, отличающийся наличием атмосферы. Немного меньше него по размеру, но от этого не менее известные – Энцелад, Рея, Диона, Тефия, Япет и Мимас. Именно эти спутники являются объектами для наиболее частого наблюдения, и потому можно сказать, что они наиболее изучены в сравнении с остальными.

Сатурн, снимок космического аппарата Кассини в 2007 году

Долгое время кольца на Сатурне считались уникальным явлением, присущим только ему. Лишь недавно было установлено, что кольца имеются у всех газовых гигантов, но у остальных они не настолько явно видны. Их происхождение до сих пор не установлено, хотя существует несколько гипотез о том, как они появились. Кроме того, совсем недавно было обнаружено, что неким подобием колец обладает и Рея, один из спутников шестой планеты.

Уран

Седьмая по счету и третья по размеру планета, радиус которой составляет 25267 км. Справедливо считается самой холодной планетой среди остальных, температура достигает -224 градусов по Цельсию. Продолжительность года — 30 685 суток в земном исчислении (почти 84 года), сутки же ненамного меньше земных – 17 с небольшим часов. Из-за сильной наклонности оси планеты, иногда создается впечатление, будто она не вращается, как остальные небесные тела нашей системы, а катится, подобно шару. Это может наблюдать любой, кого интересует астрономия, геометрическая модель солнечной системы наглядно продемонстрирует этот эффект.

Уран — снимок Вояджера-2 в 1986 году

Спутников у него гораздо меньше, чем у соседнего Сатурна, всего 27. Наиболее известны Титания, Ариэль, Оберон, Умбриэль и Миранда. Они не настолько крупны, как спутники.

Примечательно, что ведя наблюдения за Ураном в свой телескоп, астроном Уильям Гершель сначала не понял, что он наблюдает за планетой, будучи уверен, что он видит комету.

Нептун

Размером восьмая планета солнечной системы очень близка к своему ближайшему соседу, Урану. Радиус Нептуна равняется 24547 км. Год на планете равняется 60 190 суток (приблизительно 164 земных года). В атмосфере зафиксированы самые сильные ветра в нашей системе, скорость которых достигает 260 м/с.

Нептун, вид с Вояджера-2

По сравнению с остальными планетами-гигантами спутников у него совсем мало – всего 14. Самые известные из них – Тритон, третий в солнечной системе спутник, имеющий атмосферу, Протей и Нереида.

Примечательно, что это – единственная из планет, которая была открыта не благодаря наблюдениям, а с помощью математических расчётов.

Общая характеристика газовых гигантов

Главное отличие планет-гигантов заключается в том, что у них нет привычной нам твердой поверхности. Они представляют собой огромные шары, состоящие по большей части из газов. По этой причине их часто называют газовыми гигантами. Получается, что человеку никогда не удастся пройтись по поверхности Юпитера или Сатурна также, как по лунному грунту.

Однако всё же гиганты не состоят полностью из газов. Дело в том, что атмосфера по мере приближения к центру планеты становится всё более плотной, и в результате она переходит из газообразного состояния в жидкое. Однако четкой границы между океаном и атмосферой (как на Земле) у газовых гигантов нет. Кстати, состоит этот океан не из воды, а по большей части из жидкого водорода.

На ещё больших глубинах давление возрастает настолько высоко, что жидкий водород становится металлическим. Под слоем металлического водорода располагается ядро планеты, состоящее из предельно сжатых каменных пород.

Вторая важная особенность газовых гигантов – их огромные размеры. Самый маленький газовый гигант в Солнечной системе – это Нептун, чей средний радиус равен 24622 км. Для сравнения – наибольшей землеподобной планетой является сама Земля, чей радиус составляет всего 6371 км. Различие в массах ещё больше – Нептун в 17 раз тяжелее Земли. Самым же большим газовым гигантом является Юпитер. Его радиус оценивается в 69911 км, а масса превосходит земную почти в 318 раз.

Для Солнечной Системы характерно то, что все планеты-гиганты располагаются значительно дальше от центральной звезды, чем орбиты землеподобных планет. Если Марс, наиболее далекая от светила планета земной группы, никогда не удаляется от Солнца на расстояние, большее 250 млн км, то ближайший к звезде гигант, Юпитер, никогда не приближается к ней ближе, чем на 740 млн км. Вообще принято делить Солнечную систему на две области – внутреннюю, в которой расположены орбиты землеподобных планет, и внешнюю, где лежат орбиты гигантов.

Газовые гиганты отличаются тем, что день на них существенно короче, чем на Земле. Например, Юпитер совершает оборот вокруг своей оси примерно за 10 часов, а Нептун – за 16 часов. В то же время из-за большой удаленности от Солнца год на этих планетах длится очень долго. На Нептуне его продолжительность составляет 164 земных года. В результате один год на планетах-гигантах состоит из тысяч и даже десятков тысяч дней.

Планеты-гиганты обладают огромным количеством спутников. На 2020 г. известно о 79 спутниках Юпитера, 82 сателлитах у Сатурна, 27 лунах Урана и ещё о 14 нептунианских спутниках. В тоже время у 4 землеподобных планет в сумме есть только три сателлита: Луна (вращается вокруг Земли), Фобос и Деймос (принадлежат Марсу). Стоит отметить, что спутники газовых гигантов сильно отличаются по размеру, но крупнейшие из них (Ганимед и Титан) по своему радиусу превосходят Меркурий.

Помимо спутников гиганты обладают и кольцами. Впервые они были открыты у Сатурна ещё в 1656 г. с помощью обыкновенного телескопа с 50-кратным увеличением. Кольца остальных гигантов удалось обнаружить только во второй половине XX в., во многом благодаря пролету рядом с этими планетами космических зондов. Кольца гигантов представляют собой множество мелких частиц пыли и газа, которое всегда располагается в точности над экватором планеты.

В химическом составе планет-гигантов преобладает водород. Его доля может составлять от 80% (Нептун) до 96% (Сатурн). Вторым по распространенности элементом является гелий. На все остальные вещества приходится не более 2-3% массы планеты.

Историческая справка

Магнитные поля Солнца

Происхождение и виды солнечных магнитных полей

Корональные выбросы массы на Солнце. Струи плазмы вытянуты вдоль арок магнитного поля

Крупномасштабное (общее или глобальное) магнитное поле с характерными размерами, сравнимыми с размерами Солнца, имеет среднюю напряжённость на уровне фотосферы порядка нескольких гаусс. В минимуме цикла солнечной активности оно имеет приблизительно дипольную структуру, при этом напряжённость поля на полюсах Солнца максимальна. Затем, по мере приближения к максимуму цикла солнечной активности, напряжённости поля на полюсах постепенно уменьшаются и через один-два года после максимума цикла становятся равными нулю (так называемая «переполюсовка солнечного магнитного поля»). На этой фазе общее магнитное поле Солнца не исчезает полностью, но его структура носит не дипольный, а квадрупольный характер. После этого напряжённость солнечного диполя снова возрастает, но при этом он имеет уже другую полярность. Таким образом, полный цикл изменения общего магнитного поля Солнца, с учётом перемены знака, равен удвоенной продолжительности 11-летнего цикла солнечной активности — примерно 22 года («закон Хейла»).

Средне- и мелкомасштабные (локальные) поля Солнца отличаются значительно бо́льшими напряжённостями полей и меньшей регулярностью. Самые мощные магнитные поля (до нескольких тысяч гаусс) наблюдаются в группах солнечных пятен в максимуме солнечного цикла. При этом типична ситуация, когда магнитное поле пятен в западной («головной») части данной группы, в том числе самого крупного пятна (т. н. «лидера группы») совпадает с полярностью общего магнитного поля на соответствующем полюсе Солнца («p-полярностью»), а в восточной («хвостовой») части — противоположна ему («f-полярность»). Таким образом, магнитные поля пятен имеют, как правило, биполярную или мультиполярную структуру. В фотосфере также наблюдаются униполярные области магнитного поля, которые, в отличие от групп солнечных пятен, располагаются ближе к полюсам и имеют значительно меньшую напряжённость магнитного поля (несколько гаусс), но большую площадь и продолжительность жизни (до нескольких оборотов Солнца).

Согласно современным представлениям, разделяемым большей частью исследователей, магнитное поле Солнца генерируется в нижней части конвективной зоны с помощью механизма гидромагнитного конвективного динамо, а затем всплывает в фотосферу под воздействием магнитной плавучести. Этим же механизмом объясняется 22-летняя цикличность солнечного магнитного поля.

Существуют также некоторые указания на наличие первичного (то есть возникшего вместе с Солнцем) или, по крайней мере, очень долгоживущего магнитного поля ниже дна конвективной зоны — в лучистой зоне и ядре Солнца.

Солнечная активность и солнечный цикл

Комплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как солнечные вспышки, генерацию потоков ускоренных частиц, изменения в уровнях электромагнитного излучения Солнца в различных диапазонах, корональные выбросы массы, возмущения солнечного ветра, вариации потоков галактических космических лучей (Форбуш-эффект) и т. д.

С солнечной активностью связаны также вариации геомагнитной активности (в том числе и магнитные бури), которые являются следствием достигающих Земли возмущений межпланетной среды, вызванных, в свою очередь, активными явлениями на Солнце.

Одним из наиболее распространённых показателей уровня солнечной активности является число Вольфа, связанное с количеством солнечных пятен на видимой полусфере Солнца. Общий уровень солнечной активности меняется с характерным периодом, примерно равным 11 годам (так называемый «цикл солнечной активности» или «одиннадцатилетний цикл»). Этот период выдерживается неточно и в XX веке был ближе к 10 годам, а за последние 300 лет варьировался примерно от 7 до 17 лет. Циклам солнечной активности принято приписывать последовательные номера, начиная от условно выбранного первого цикла, максимум которого был в 1761 году. В 2000 году наблюдался максимум 23-го цикла солнечной активности.

Существуют также вариации солнечной активности большей длительности. Так, во второй половине XVII века солнечная активность и, в частности, её одиннадцатилетний цикл были сильно ослаблены (минимум Маундера). В эту же эпоху в Европе отмечалось снижение среднегодовых температур (т. н. Малый ледниковый период), что, возможно, вызвано воздействием солнечной активности на климат Земли. Существует также точка зрения, что глобальное потепление до некоторой степени вызвано повышением глобального уровня солнечной активности во второй половине XX века. Тем не менее, механизмы такого воздействия пока ещё недостаточно ясны.

Самая большая группа солнечных пятен за всю историю наблюдений возникла в апреле 1947 года в южном полушарии Солнца. Её максимальная длина составляла 300 000 км, максимальная ширина — 145 000 км, а максимальная площадь превышала 6000 миллионных долей площади полусферы (мдп) Солнца, что примерно в 36 раз больше площади поверхности Земли. Группа была легко видна невооружённым глазом в предзакатные часы. Согласно каталогу Пулковской обсерватории, эта группа (№ 87 за 1947 год) проходила по видимой с Земли полусфере Солнца с 31 марта по 14 апреля 1947 года, максимальная её площадь составила 6761 мдп, а максимальная площадь наибольшего пятна в группе — 5055 мдп; количество пятен в группе достигало 172.

Солнце как переменная звезда

Так как магнитная активность Солнца подвержена периодическим изменениям, а вместе с этим изменяется и его светимость, его можно рассматривать как переменную звезду. В годы максимума активности Солнце ярче, чем в годы минимума. Амплитуда изменений солнечной постоянной достигает 0,1 % (в абсолютных значениях это 1 Вт/м², тогда как среднее значение солнечной постоянной — 1361,5 Вт/м²).

Также некоторые исследователи относят Солнце к классу низкоактивных переменных звёзд типа BY Дракона. Поверхность таких звёзд покрыта пятнами (до 30 % от общей площади), и за счёт вращения звёзд наблюдаются изменения их блеска. У Солнца такая переменность очень слабая.

Почему у астильбы скручиваются листья

Понимание Солнечной системы

Последовательность планет рядом с нами.

За малым исключением, до эпохи современной астрономии лишь немногие люди или цивилизации понимали, что такое Солнечная система. Подавляющее большинство астрономических систем постулировало, что Земля — неподвижный объект, вокруг которого вращаются все известные небесные объекты. Кроме того, она существенно отличалась от других звездных объектов, которые считались эфирными или божественными по своей природе.

Хотя во времена античного и средневекового периода были некоторые греческие, арабские и азиатские астрономы, которые верили, что Вселенная гелиоцентрична (то есть что Земля и другие тела вращаются вокруг Солнца), только когда Николай Коперник разработал математическую предиктивную модель гелиоцентрической системы в 16 веке, эта идея получила широкое распространение.

Галилей (1564 – 1642) частенько показывал людям, как пользоваться телескопом и наблюдать за небом на площади Сан-Марко в Венеции. Учтите, в те времена не было адаптивной оптики.

В течение 17 века ученые вроде Галилео Галилея, Иоганна Кеплера и Исаака Ньютона разработали понимание физики, которое постепенно привело к принятию того, что Земля вращается вокруг Солнца. Развитие теорий вроде гравитации также привело к осознанию того, что другие планеты подчиняются тем же физическим законам, что и Земля.

Широкое распространение телескопов также привело к революции в астрономии. После открытия Галилеем спутников Юпитера в 1610 году, Кристиан Гюйгенс обнаружил, что и Сатурн обладает лунами в 1655 году. Также были обнаружены новые планеты (Уран и Нептун), кометы (комета Галлея) и пояс астероидов.

К 19 веку три наблюдения, сделанные тремя отдельными астрономами, определили истинную природу Солнечной системы и ее место во Вселенной. Первое сделал в 1839 году немецкий астроном Фридрих Бессель, успешно измеривший кажущийся сдвиг в позиции звезды, созданный движением Земли вокруг Солнца (звездный параллакс). Это не только подтвердило гелиоцентрическую моедль, но и показало гигантское расстояние между Солнцем и звездами.

В 1859 году Роберт Бунзен и Густав Кирхгоф (немецкие химик и физик) использовали недавно изобретенный спектроскоп для определения спектральной сигнатуры Солнца. Они обнаружили, что Солнце состоит из тех же элементов, что существуют на Земле, тем самым доказав, что твердь земная и твердь небесная сделаны из одной материи.

Наглядное сравнение планет.

Затем отец Анджело Секки — итальянский астроном и директор Папского Григорианского университета — сравнил спектральную сигнатуру Солнца с сигнатурами других звезд и обнаружил, что те практически идентичны. Это убедительно показало, что наше Солнце состоит из тех же материалов, что и любая другая звезда во Вселенной.

Дальнейшие очевидные расхождения в орбитах внешних планет привели американского астронома Персиваля Лоуэлла к выводу, что за пределами Нептуна должна лежат «планета Х». После его смерти обсерватория Лоуэлла провела необходимые исследования, которые в конечном итоге привели Клайда Томбо к открытию Плутона в 1930 году.

В 1992 году астрономы Дэвид К. Джевитт из Гавайского университета и Джейн Луу из Массачусетского технологического института обнаружили транснептуновый объект (ТНО), известный как (15760) 1992 QB1. Он вошел в новую популяцию, известную как пояс Койпера, о котором долгое время говорили астрономы и который должен лежать на краю Солнечной системы.

Дальнейшее исследование пояса Койпера на рубеже веков привело к дополнительным открытиям. Открытие Эриды и другие «плутоидов» Майком Брауном, Чадом Трухильо, Давидом Рабиновичем и другими астрономами привело к суровой дискуссии между Международным астрономическим союзом и некоторыми астрономами на тему обозначения планет, больших и малых.

понедельник, 27 июня 2011 г.

Интересные факты

• В прошлом Земля считалась центром Вселенной. 2000 лет древние астрономы считали, что Земля статична, а другие небесные тела путешествуют по круговым орбитам вокруг нее. К такому мнению они пришли наблюдая очевидное движение Солнца и планет при наблюдении с Земли. В 1543 году Коперник опубликовал свою гелиоцентрическую модель Солнечной системы, в которой Солнце находится в центре нашей Солнечной системы.

• Земля это единственная планета в системе, которую не назвали в честь мифологических богов или богинь (остальные семь планет в Солнечной системе были названы в честь римских богов или богинь). Имеется ввиду пять видимых невооруженным глазом планет: Меркурий, Венера, Марс, Юпитер и Сатурн. Все тот же подход с именами древнеримских богов был использован после открытия Урана и Нептуна. Само же слово «Земля» происходит от старого английского слова «ertha» означающее почву.

• Земля является самой плотной планетой в Солнечной системе. Плотность Земли отличается в каждом слое планеты (ядро, например, является более плотным, чем земная кора). Средняя плотность планеты составляет около 5,52 грамма на кубический сантиметр.

• Гравитационное взаимодействие между Землей и Луной вызывает приливы на Земле. Считается, что Луна заблокирована приливными силами Земли, поэтому ее период вращения совпадает с Земным и она обращена к нашей планете всегда одной и той же стороной.

• Вращение Земли постепенно замедляется. Замедление вращения Земли происходит очень медленно, примерно 17 миллисекунд на сто лет. Но, в конечном итоге, это удлиняет день. Тем не менее, этому процессу потребуется около 140 миллионов лет для того, чтобы увеличить сутки с 24 до 25 часов.

• Атмосфера Земли на 78% состоит из азота, 21% кислорода, а также следовых количеств других газов, включая аргон и углекислый газ.

• Значительная часть земного кислорода была образована в процессе фотосинтеза.

• Земля имеет очень мощное магнитное поле. Это поле защищает планету от воздействия солнечного ветра и, как считают ученые, является результатом никель-железного ядра планеты и его быстрого вращения.

• Земля имеет озоновый слой, который защищает ее от вредного солнечного излучения. Эта оболочка представляет собой особый тип кислорода, который поглощает большую часть мощных ультрафиолетовых лучей.

• 70% поверхности Земли покрыто водой, остальную часть представляют континенты и острова, на которых также присутствует множество озер и других источников воды.

• Считается, что первая жизнь на Земле возникла в океане посредством процесса абиогенеза — естественного процесса, при котором жизнь вырастает из неживой материи в виде простого органического соединения.

• Вода Земли первоначально могла находится внутри планеты. Но, с течением времени, вода была доставлена на поверхность в результате вулканической активности планеты.

• Земля имеет относительно небольшое число видимых кратеров по сравнению с другими твердыми телами в Солнечной системе. Это происходит потому, что Земля является геологически активной, на ней происходят такие процессы, как тектоника и эрозия, которые могут менять ее поверхность.

Апертурный прицел (закрытый)

Продолжительность года

Кольца Сатурна

Любое описание данного небесного тела начинается с информации о наличии колец. За всю историю астрономии, астрологии и других наук, изучающих космос, было выдвинуто множество гипотез их происхождения.

Причины возникновения могут быть в следующем:

  1. Гравитация Сатурна не позволила сформироваться небольшому космическому объекту рядом с ним.

  2. Столкновение с другим космическим телом, в результате которого тело разлетелось вокруг планеты.

  3. Гравитация поглотила молодые первичные спутники.

Тема о возникновении колец до сих пор волнует умы ученых, так как не имеется доказательств их образования. Ясно одно, что они моложе самой планеты. Лед в составе колец чистый. Не выглядит, что он образовался одновременно с планетой примерно 4 млрд. лет назад.

Интересно, что кольца «терялись» в 1995 г., этот же случай повторился в 2009 г. Оказывается, они не исчезали, а планета смотрела ребром в земную сторону.

Структура Земли

Земля имеет слоистое строение. С увеличением глубины происходит следующая смена слоев:

  • кора;
  • верхняя мантия;
  • мантия;
  • жидкое внешнее ядро;
  • твердое внутреннее ядро.

В составе земной коры выделяют литосферу и астеносферу — верхний и нижний слой соответственно. Литосфера состоит из тектонических плит, прижатых друг к другу и при этом медленно движущихся относительно друг друга. Средняя толщина литосферы — 64 км, при этом континентальная кора тоньше океанической. Крупнейшие тектонические плиты Земли:

  1. Евразийская.
  2. Антарктическая.
  3. Африканская.
  4. Североамериканская.
  5. Южноамериканская.
  6. Тихоокеанская.
  7. Индо-Австралийская.

Изучение внутреннего строения Земли — чрезвычайно сложная задача. Credit: cosmosights.i11.co

Астеносфера — переходный слой между литосферой и верхней мантией, которая представляет собой вязкие, расплавленные горные породы. В этом слое возникают хаотичные течения, которые и приводят к движению тектонических плит. При их столкновении, наползании друг на друга или разрыве случаются землетрясения, возникают горы и каньоны.

По мере движения к центру Земли структура мантии меняется и она становится твердой. Мантия представлена силикатными горными породами и простирается до глубины 2,9 тыс. км. На ее долю приходится 83% объема и 67% массы планеты.

Текущие исследования планет Земной группы

Исследователи считают, что планеты земного типа – лучшие кандидаты в обнаружении жизни. Конечно, выводы основаны на том, что единственная планета с жизнью – Земля, поэтому ее характеристики и особенности служат своеобразным эталоном.

Все говорит о том, что жизнь способна выживать в экстремальных условиях. Поэтому ее ожидают найти даже на Меркурии и Венере, несмотря на их высокие температуры. Больше всего внимания уделяют Марсу. Это не только главный кандидат в нахождении жизни, но и потенциальная будущая колония.

Если все пойдет по плану, то в 2030-х гг. на Красную планету могут отправить первую партию астронавтов. Сейчас на планете постоянно находятся роверы и орбитальные аппараты, которые ищут воду и признаки жизни.

Экзопланеты земного типа

Многие найденные экзопланеты оказывались газовыми гигантами, потому что их намного проще отыскать. Но с 2005 года мы начали активно улавливать земные объекты благодаря миссии Кеплер. Большую часть  найденных экзопланет оказались супер=землями (похожими на планету Земля, но намного крупнее).

Художественное представление Глизе 876d

Среди таких стоит вспомнить Глизе 876d, чья масса в 7-9 раз превосходит земную. Совершает обороты вокруг красного карлика, отдаленного от нас на 15 световых лет. В системе Глизе 581 нашли 3 земных экзопланеты на расстоянии в 20 световых лет от нас.

Наименьшая – Глизе 581e. Она превышает массу Земли всего в 1.9 раз, но расположена крайне близко к своей звезде. Первой подтвержденной земной экзопланетой была Кеплер-10b, которая больше массы Земли в 3-4 раз. Она отдалена на 460 световых лет и была найдена в 2011 году.

Супер-Земли

Среди экзопланет удалось отыскать множество супер-земель (по размеру они находятся между Землей и Нептуном). Этот тип планет не встретить на территории нашей Солнечной системы, поэтому пока еще не ясно, как именно они выглядят.

Сейчас научный мир ожидает запуска телескопа Джеймс Уэбб, который обещает увеличить силу поиска и приоткроет нам космические тайны

Категории планет Земной группы

Существует разделение планет земного типа. Силикатные – типичные объекты нашей Солнечной системы, представленные каменной мантией и металлическим ядром. Железные – теоретическая разновидность, состоящая полностью из железа. Это придает больший показатель плотности, но сокращает радиус. Такие планеты способны появиться только на территориях с высоким температурным показателем.

Скалистые – еще один теоретический вид, где есть силикатная порода, но нет металлического ядра. Они должны сформироваться подальше от звезды. Углеродистые – наделены металлическим ядром, вокруг которого скопился углеродосодержащий минерал.

Раньше мы думали, что детально изучили процесс планетарного формирования. Но рассмотрение экзопланет заставляет находить множество пробелов и приниматься за новые исследования. Это расширяет также условия поиска жизни в чужих мирах. Кто знает, что мы там увидим, если сможем послать зонд.

Планеты Солнечной системы
Карликовые планеты Плутон · Церера · Хаумеа · Макемаке · Эрида
Планеты Земной группы Меркурий · Венера · Земля · Марс
Газовые гиганты Юпитер · Сатурн · Уран · Нептун
Солнечная система

Исследования планеты

Переход от попыток мифического объяснения существования мира к его рациональному изучению начался еще в античные времена и ускорился с появлением письменности. Первые описания Земли отличались наивностью и были развенчаны учеными по мере развития научных знаний.

Представления о планете как о плоском диске были опровергнуты еще в VI в. до н. э., а в III в. до н. э. древнегреческий ученый Эратосфен Киренский смог вычислить длину окружности Земли. Другой грек, философ Аристотель, примерно в то же время рассуждал о медленном движении земной коры и впервые попытался определить возраст планеты. Такие же попытки предпринимали и другие ученые. Плиний и Шень Го независимо друг от друга с этой целью изучали окаменелости и горные породы.

В XVI в. багаж научных знаний пополнился теорией Коперника о гелиоцентрической модели мира. В этот же период изобретение телескопа Галилео Галилеем позволило расширить представления о месте планеты в Солнечной системе и вывело астрономию на новый научный уровень.

В 1959 г. был получен первый снимок Земли с космического аппарата Эксплорер-6, а 1961 г. Юрий Гагарин стал первым человеком, который посмотрел на нашу планету из космоса своими глазами.

В дальнейшем наблюдения, развитие геологии, космические исследования позволили человечеству составить подробную систему знаний о Земле как планете.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector