Термоядерная реакция

Видео про ШРУС

Атомная эра

По использованию в качестве источника энергии урана в мире существует резкая дифференциация. Всего сейчас работает 191 ядерная электростанция с 451 ядерным реактором (еще 60 реакторов находятся в стадии строительства). Из этого числа 100 реакторов построены в США и дают этой стране 20% электроэнергии. В России 36 реакторов дают почти пятую часть электроэнергии. Есть страны, в которых ядерная энергия — это треть энергии в ее общем балансе (Южная Корея, Финляндия). Имеются страны, где эта доля — почти половина всей энергии (Словакия, Украина). А вот в Китае и Индии доля ядерной энергии в общем балансе меньше 5%. Совсем не используется ядерная энергия в Австралии, в большинстве стран Южной и Центральной Америки и в многочисленных мелких государствах Океании. Опережает все страны по этому показателю Франция, в которой 58 ее ядерных реакторов производят 77% всей вырабатываемой в стране электроэнергии. Неслучайно статья в Википедии об экономике Франции начинается словами: «Франция — высокоразвитая страна, ядерная и космическая держава».

Отчасти это объясняется тем обстоятельством, что во Франции еще в 30-е годы прошлого века начали развиваться работы по ядерной физике. Ирен и Фредерик Жолио-Кюри (как и Энрико Ферми в Италии) стали нобелевскими лауреатами за получение новых изотопов («меченых атомов»). Но они не поняли, что в их опытах наблюдалась также реакция деления урана. Об этом догадались немецкие радиохимики и физики О. Ган, Ф. Штрассманн, Л. Мейтнер. Началась атомная эра. Энрико Ферми продолжал работы с ураном уже в США. Он изобрел и построил ядерный реактор, где в ноябре 1942 года впервые в мире была осуществлена цепная ядерная реакция деления урана. Но целью создания первых реакторов было не выработка электроэнергии, а получение плутония, искусственного трансуранового элемента, способного, как и уран, к взрывному осуществлению реакции деления.

После окончания войны и ужасных августовских событий 1945 года в Хиросиме и Нагасаки интересы многих физиков-ядерщиков сосредоточились на мирном использовании энергии деления. Их вдохновлял и запуск в 1954 году первой в мире ядерной электростанции в СССР. В реакторостроении Франция вскоре стала мировым лидером. Возможно, в этом немалую роль сыграли и почти полное отсутствие во Франции секретности ядерных исследований, и большой интерес к этим исследованиям французского правительства. На юге Франции, в маленьком городке Кадараш в 60 километрах от Марселя был создан мощный научный центр ядерной физики.

И именно там, неподалеку от Кадараша, в 2006 году было намечено построить ИТЭР — международный термоядерный экспериментальный реактор. Огромную строительную площадку размером с 400 футбольных полей было решено создать в лесном массиве, поскольку вся безлесная сельскохозяйственная округа была арендована частными владельцами. Первое дерево было срублено 29 января 2007 года. Но перед этим несколько лет уточнялись научные предпосылки строительства реактора и почти пять лет разрабатывался технический проект сооружения. Много времени ушло и на организацию финансирования проекта и создание управляющих органов. Первоначально планировалось запустить реактор в 2022 году и затратить 5 миллиардов долларов. Но в 2012 году проект был пересмотрен, сроком окончания строительства был намечен 2025 год, а предполагаемая сумма затрат возросла до 20 миллиардов долларов. Сейчас пройдена половина дистанции, и панорама строительства поражает воображение.

Кто же затеял и осуществил проект этой грандиозной стройки, поистине «стройки ХХI века»? Как возникла система финансирования и изготовления многочисленных узлов и агрегатов будущего реактора?

Безопасна ли реакция термоядерного синтеза

Главным преимуществом реакции термоядерного синтеза, проходящей внутри токамака, является ее безопасность. Можно удивиться, как такое возможно при достижении таких высоких температур, но это действительно так.

Все из-за того, что плотность плазмы в миллион раз меньше плотности атмосферы. Благодаря такой особенности работы, взрыв из-за внутреннего давления просто невозможен. Да и если температура начнет падать, плазма просто будет, как говорят физики, ”осыпаться”. Плюс, топливо подается в течение всей реакции и для ее остановки достаточно просто прекратить его подачу. Например, атомную станцию просто выключить нельзя и я уже рассказывал, почему.

Единственной опасностью является только то, что изотоп трития обладает небольшой радиоактивностью. Впрочем, она не такая высокая, чтобы переживать по этому поводу. Она существенно ниже, чем у топлива для атомной станции. Например, период полураспада уранового топлива составляет почти 5 миллиардов лет (то есть почти никогда), а трития — всего 12 лет. Да и используется его минимальное количество.

А еще можно добавить, что технологию реакции термоядерного синтеза нельзя применить в военных целях. Создание плазмы вне токамака пока невозможно, а использование его самого в качестве оружия слабо осуществимо из-за того, что он не взрывается.

Открытие атомной энергии

Отто Хан

В 1938 году немецкие физики Отто Хан и Фриц Штрассман бомбардировали атом урана нейтронами в попытке образовать тяжелые элементы. Но ядро урана распалось на более лёгкие элементы барий и криптон, что значительно меньше, чем уран. Ученые озадачились неожиданными результатами так как открыли расщепление ядра.

Австрийский физик Лиза Мейтнер, бежавшая в Швецию после вторжения Гитлера в ее страну, поняла, что расщепление ядра также освобождает энергию. Работая над этой проблемой, она установила, что деление дает минимум два нейтрона. В конечном счете, другие физики поняли, что каждый вновь освобожденный нейтрон может продолжать вызывать две отдельные реакции, каждая из которых может вызвать по крайней мере еще. Один удар может запустить цепную реакцию, управляя выпуском еще большей энергии.

Конструкции термоядерных реакторов

Сегодня для создания высокотемпературной плазмы используются два основных типа устройств:

  • квазистационарные;
  • импульсные.

К первой группе относятся устройства, в которых нагрев плазмы, а также ее удержание осуществляется с помощью мощного магнитного поля — токамаки, стеллараторы, магнитные ловушки. Они отличаются лишь конфигурацией магнитного поля.

Российский токамак Т-15МД. Его запуск состоится в декабре 2020 года

Сейчас основные надежды инженеров и ученых связаны с токамаками. Эти устройства представляют собой тороидальные камеры со множеством внешних магнитов, которые удерживают плазму, не давая ей коснуться стенок. Кроме того, электрический ток непосредственно проходит по плазменному шнуру в вакуумной камере, что является главным отличием токамаков от других устройств данного типа. В мире построено более трехсот токамаков, такую же схему будет иметь реактор, разрабатываемый сейчас в рамках проекта ITER. В 2003 году на токамаке Tore Supra был поставлен рекорд длительности удержания плазмы – 6,5 минут. Еще в 90-е годы на токамаках TFTR и JET удалось добиться получения энергии, практически равной затратам на разогрев плазмы. Никакие другие установки похвастать подобным достижениями пока не могут.

Вторым распространенным типом термоядерного реактора является стелларатор. В нем магнитное поле для удержания плазмы создается только внешними источниками

Такие устройства имеют более сложную конструкцию по сравнению с токамаками, и стоят они дороже, но поведение плазмы в стеллараторах более спокойное и предсказуемое, что очень важно для коммерческого использования технологии

Самый большой в мире реактор-стелларатор Wendelstein 7-X. Его строили почти 15 лет

Импульсные или инерциальные системы работают совсем по другому принципу. Если в токамаках и стеллараторах до огромных температур нагревается плазма сравнительно небольшой концентрации, то в инерциальных устройствах она сжимается до огромной плотности с помощью лазерного излучения или потока частиц. Подобная схема выглядит весьма заманчиво, но на практике все не так просто.

Первые попытки создать инерциальное устройство относятся к 60-м годам прошлого века. Первоначально из термоядерного топлива формировали небольшой шарик, который облучали множеством мощных лазерных лучей. Однако оказалось, что сфера нагревается неравномерно и слабо. Чтобы решить эти проблемы, мишень стали заключать в особый контейнер с отверстиями, через которые проникают лазерные лучи. Излучение поглощается специальными кристаллами, что превращают поступающее излучение в ультрафиолетовое. Прогрессу инерциального метода способствовала концепция «быстрого поджига», предполагающая использование двух лазерных импульсов: один сжимает топливную капсулу, другой – разогревает ее.

Будущее мировой энергетики

В то же время, к концу двадцатого столетия стало отчетливо ясно, что человечество стоит перед угрозой всемирного энергетического голода. Тогда, двадцать лет назад, 80% мировой электроэнергии производилось на тепловых электростанциях, использующих в качестве источника энергии каменный уголь и природный газ, 15% приходилось на гидроэнергию, 10% — на ядерные (урановые) электростанции. Энергия солнечного излучения, ветра, морских приливов и тепла земных недр составляла в общем энергетическом балансе лишь сотые доли процента.

Работы ряда международных организаций позволили оценить мировые запасы природных источников электроэнергии и темпы нарастания ее потребления. По самым оптимистическим прогнозам, природного газа должно хватить на 100 лет, каменного угля — на 300 лет, урана — на 500 лет. Значительно расширить производство гидроэнергии не представляется возможным по экологическим соображениям. Мощные гидростанции требуют создания огромных водохранилищ, а это может нанести непоправимый вред природе. Так, например, при постройке крупнейшей в мире гидростанции «Три ущелья» на реке Янцзы (мощностью 22,5 ГВт) созданное искусственное озеро площадью в 630 км2 потребовало переселения трех миллионов человек. А в несколько раз меньшие по мощности российские гидростанции Братская и Усть-Илимская «снабжены» водохранилищами площадью 5400 км2 и 1830 км2 . Это уже не озера, а целые моря.

Мы специально ничего не говорим о нефти, запасы которой, как известно, наиболее ограничены (максимум на 60–80 лет). В получении электроэнергии сама нефть не играет заметной роли. Она используется для транспорта — авиационного, автомобильного, водного и железнодорожного. Часть транспорта, конечно, можно будет перевести на электрические двигатели, как уже это сделано для железнодорожного транспорта. Но, во-первых, это даст еще большую нагрузку на сжигание газа и каменного угля и, во-вторых, довольно трудно представить авиацию на «электрической тяге». А главное, прекратить использование нефти в качестве топлива придется довольно скоро, ведь нефть — невосполнимый источник многих химических технологий. Перефразируя Д. И. Менделеева, скоро можно будет сказать, что дешевле сжигать в автомобилях ассигнации, чем бензин.

Что произошло в мировой энергетике за прошедшие 20 лет? Главное изменение — это значительное увеличение доли используемого в качестве источника энергии природного газа. Она увеличилась с 5 до 15%. Соответственно, доля каменного угля уменьшилась до 50%. Гидроэнергия обеспечивает 20%, а ядерная энергия — 12%. По-прежнему крайне незначительна роль в энергетическом балансе энергии солнечного излучения и ветровой энергии. Увеличение доли природного газа в энергобалансе безусловно снижает экологический вред от сжигания каменного угля, в продуктах горения которого содержится целый ряд вредных газов и микрочастиц тяжелых металлов. Улавливание этих примесей перед выбросом газов в атмосферу обходится очень дорого. Это смогли себе позволить США, где сжигание каменного угля дает 60% энергии. А вот экологическая обстановка в густонаселенных районах Китая катастрофически ухудшается. В этой стране, почти лишенной природного газа, 75% электроэнергии производится за счет сжигания каменного угля. Россия в этом отношении — благополучная страна. Уже только 20% электроэнергии производится на угольных электростанциях, а 55% дает природный газ. Суммарная доля использования гидроэнергии и ядерной энергии примерно соответствует среднемировому показателю — 32%.

Почему до сих пор не получилось

Существует так называемый критерий Лоусона, позволяющий оценить, возможен ли синтез в определенном реакторе с использованием того или иного топлива. Чтобы запустить реакцию, необходимо обеспечить оптимальную плотность плазмы, разогреть ее до достаточно высоких температур, максимально уменьшив при этом потери энергии. Например, в дейтерий-тритиевой плазме при температуре в 110 млн градусов, произведение числа частиц в кубическом сантиметре на время их удержания (в секундах) должно быть не менее 1014.

Схема устройства токамака

Однако плазма – весьма беспокойная субстанция. Она не любит, когда ее удерживают, и постоянно стремится выйти из-под контроля. С этой проблемой физики столкнулись еще в 60-е годы. Чтобы хотя бы частично решить ее, потребовалось значительно усложнить конструкцию реактора.

Второй серьезной проблемой является потеря энергии. Плазма, как и любое другое нагретое тело, начинает излучать в электромагнитном диапазоне, стремительно при этом остывая. Чтобы поддерживать температуру на довольно высоком уровне, приходится постоянно вкачивать огромное количество энергии.

Кроме глобальных физических, перед инженерами встало множество чисто прикладных вопросов. В результате идея управляемого синтеза, которая в моделях выглядела многообещающе, оказалась очень сложной для реализации. Например, в серьезную проблему превратилась обычная пыль. Она проникает в вакуумные камеры реакторов и поглощает заметную часть ядерного топлива.

Состояние системы, при котором в ходе реакции синтеза выделяется столько же энергии, сколько затрачено на ее запуск и поддержку, обозначается литерой Q. Для самоподдерживающей реакции без внешнего подогрева коэффициент должен быть равен 5, и этот показатель до сих пор не достигнут. Для получения стабильной плазмы, пригодной для коммерческих установок, нужны гораздо  большие значения. Например, на ITER планируют достигнуть Q ~ 30.

Справедливости ради следует отметить, что огромные средства, выделяемые физикам на протяжении десятилетий, потрачены не впустую. Параметры современных реакторов всего лишь в несколько раз хуже необходимых для достижения устойчивой термоядерной реакции. Несколько десятилетий назад отставание было на порядки.

Концептуальный проект

Термоядерный синтез, та же реакция, которая происходит в центре Солнца, соединяются атомные ядра, чтобы сформировать более тяжелые ядра. Термоядерный синтез генерирует гораздо больше поток энергии, чем сжигание ископаемого топлива.

Например, в количестве атомов водорода размером с ананас находится столько же энергии, сколько в 10 000 тонн угля, в соответствии с заявлением по проекту международного термоядерного реактора.

В отличие от ядерного деления которое разбивает большие атомы на более мелкие этот термоядерный реактор не будет производить высокий уровень радиоактивных отходов. И в отличие от установок по производству ископаемого топлива, термоядерная энергия слияния не генерирует парниковых газов, углекислого газа или других загрязнителей.

Ядерное деление

В термоядерном реакторе выделяется энергия при синтезе лёгких ядер (водорода, гелия и лития). Чтоб два ядра водорода (на практике – дейтерия и/или трития, то есть изотопов водорода) сошлись на достаточно близкое расстояние, чтобы преодолеть кулоновское отталкивание одноименно заряженных ядер, необходимо создать либо огромное давление, либо крайне высокую температуру.

В термоядерном реакторе нет ничего самопроизвольного, поэтому он безопаснее.  Любое неконтролируемое повреждение и исчезают условия, необходимые для термоядерного синтеза.

Термоядерный синтез

Атомный термоядерный реактор использует сверхпроводящие магниты для плавления атомов водорода и получения большого количества тепла. Будущие атомные термоядерные электростанции могут затем использовать эту теплоту для привода турбин и выработки электроэнергии.

Экспериментальный реактор не будет использовать обычные атомы водорода, ядра которых состоят из одного протона. Вместо этого он будет взрывать дейтерий, ядра которого имеют один протон и один нейтрон, с тритием, ядра которых имеют один протон и два нейтрона. Дейтерий легко извлекается из морской воды, а тритий будет сгенерирован внутри термоядерного реактора. Поставки этих видов топлива достаточно велики, достаточно на миллионы лет при нынешнем глобальном потреблении энергии.

И в отличие от реакторов деления, термоядерное синтезирование является очень безопасным: если реакции термоядерного синтеза нарушаются в пределах завода по термоядерному синтезу, термоядерные реакторы просто отключаются безопасно и без необходимости внешней помощи, отметил проект ITER. Теоретически, плавильные установки также используют только несколько граммов топлива одновременно, поэтому нет возможности аварии расплава.

Мюонный катализ

Основная статья: Мюонный катализ

Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов.

Мюоны µ−, вступая во взаимодействие с термоядерным топливом, образуют мезомолекулы, в которых расстояние между ядрами атомов топлива многократно (≈200 раз) меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.

Число реакций синтеза Xc, инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения Xc ~100, то есть один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х — энергетический выход катализируемой реакции.

Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при Xc ~ 104.

Недостатки технологии

Недостатки термоядерной энергетики, как и ее достоинства – вещь довольно условная. Пока не существует работающего прототипа реактора, и точно неизвестно, каким именно он будет. Однако некоторые «подводные камни» технологии хорошо видны уже сегодня.

Стоимость

Ядерный синтез изначально представлялся как способ дешевого получения энергии, но сегодня это утверждение все чаще поддается критике. Существующие устройства для удержания плазмы – это фантастически сложные конструкции весом в десятки тонн, с сотнями сверхпроводящих магнитов и замысловатой системой охлаждения жидким гелием. Их цена может достигать десятков миллиардов долларов. Примером может служить все тот же ITER, на который первоначально планировали потратить 5 млрд евро. Сегодня разработчики не уверены, что вложатся в сумму 20 миллиардов.

Топливо

Вероятно, что первые реакторы будут работать на дейтерий-тритиевой смеси: другие варианты сейчас выглядят малореалистичными. С дейтерием проблем нет – его можно получать из обычной воды, а вот тритий придется нарабатывать в специальных реакторах, и стоит такое удовольствие недешево.

В 2010 году производство килограмма этого вещества обходилось в 30 млн долларов. Конечно, есть практически «дармовая» дейтерий-дейтериевая реакция, но она протекает значительно сложнее. Кроме того, в ходе вышеуказанных взаимодействий возникает колоссальный поток нейтронов, облучающий конструкцию реактора и делающий его радиоактивным. Куда интереснее выглядит использование «безнейтронного» гелия-3, но осуществить взаимодействие с его участием мы пока не можем даже теоретически. К тому же за этим изотопом придется лететь на Луну, а то и на Юпитер, что выглядит абсолютной фантастикой.

Радиоактивность

Ядерный синтез обычно позиционируется как абсолютно чистый способ получения энергии, но это не совсем так. Действительно, при слиянии ядер не образуется килограммов токсичных отходов, но есть другая беда – наведенная радиация. Она возникает при воздействии нейтронов на конструкцию реакторов. Согласно некоторым оценкам, в постоянно работающих термоядерных установках радиация  будет в сто раз интенсивнее, чем в реакторах существующих атомных станций. Как решать эту проблему – непонятно: либо необходимо разрабатывать новые материалы, устойчивые к воздействию нейтронного облучения, либо элементы конструкций придется постоянно менять. Правда, в последнем случае неизбежно встанет вопрос о рентабельности подобных проектов. Еще можно добавить, что усложнение конструкции термоядерных реакторов дошло до такого уровня, что превратилось в фундаментальную проблему для их проектирования, создания и контроля качества.

Проблема управляемых термоядерных реакций

Хотя энергия слияния имеет много потенциальных преимуществ, она оказалась чрезвычайно трудной для достижения на Земле. Атомные ядра требуют огромного количества тепла и давления, прежде чем они объединятся.

Чтобы преодолеть эту огромную проблему необходимо нагревать водород примерно до 150 миллионов градусов по Цельсию что, в 10 раз жарче, чем ядро Солнца. Эта перегретая плазма водорода будет ограничена и распространяется внутри в форме под названием токамак, который находится в окружении гигантских сверхпроводящих магнитов, которые управляют электрически заряженной плазмой. Для того, чтобы сверхпроводящие магниты функционировали, их необходимо охлаждать до минус 269 градусов C, также холодно как и в межзвездном пространстве.

Промышленные объекты по всему миру производят 10 миллионов комплектующих для реактора. Реактор часто упоминается как самое сложное инженерное сооружение. Например, магниты высотой более 17 метров должны быть установлены вместе с погрешностью менее 1 миллиметра.

Охлаждение 10 000 тонн сверхпроводящего материала магнита до минус 269 градусов беспрецедентно по масштабу.

Ссылкa[править | править код]

Реактор

Более сорока лет мировое термоядерное лобби тратит около миллиона долларов ежегодно на исследования термоядерного синтеза, который предполагается получить с помощью ТОКАМАКа. Однако практически все прогрессивные учёные против таких исследований, поскольку положительный результат, скорее всего, невозможен. Западная Европа и США разочарованно приступили к демонтажу всех своих ТОКАМАКов. И только в России ещё верят в чудо. Хотя многие учёные считают эту идею идеальным тормозом альтернативы ядерному синтезу. Что же такое ТОКАМАК? Это один из двух проектов термоядерного реактора, представляющий собой тороидальную камеру с магнитными катушками. А ещё существует стелларатор, в котором плазма удерживается в магнитном поле, но катушки, наводящие магнитное поле, — внешние, в отличие от ТОКАМАКа.

Это очень непростая конструкция. ТОКАМАК по сложности вполне достоен Большого адронного коллайдера: более десяти миллионов элементов, а общие затраты вместе со строительством и стоимостью проектов значительно превышают двадцать миллиардов евро. Коллайдер намного дешевле обошёлся, а поддержка работоспособности МКС также стоит не дороже. Тороидальные магниты требуют восьмидесяти тысяч километров сверхпроводящей нити, их общий вес превосходит четыреста тонн, а полностью реактор весит примерно двадцать три тысячи тонн. Эйфелева башня, например, весит всего семь тысяч с небольшим. Плазма ТОКАМАКа состаляет восемьсот сорок кубометров. Высота — семьдесят три метра, шестьдесят из них — под землёй. Для сравнения: Спасская башня имеет высоту всего семьдесят один метр. Площадь платформы реактора — сорок два гектара, как шестьдесят футбольных полей. Температура плазмы — сто пятьдесят миллионов градусов по Цельсию. В центре Солнца она в десять раз ниже. И всё это ради управляемого термоядерного синтеза (горячего).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector