Энергетические соотношения в радиолокации. дальность действия беззапросной рлс

Содержание:

Дальность действия радиолокатора с активным ответом

Активный ответ приходит от радиолокационного ответчика (ретранслятора), установленного на цели.

Максимальная дальность действия по каналу запроса

Dreq.max=PreqGreqAr4πPr.min{\displaystyle D_{req.max}={\sqrt {{P_{req}G_{req}A_{r}} \over {4\pi P_{r.min}}}}}

Максимальная дальность действия по каналу ответа

Dresp.max=PrespGrespAr4πPr.min{\displaystyle D_{resp.max}={\sqrt {{P_{resp}G_{resp}A_{r}} \over {4\pi P_{r.min}}}}}

При работе с активным ответом, расстояние входит в формулы со степенью 2, а не 4, так как мощность ответчика является фиксированной и не зависит от мощности падающего на «цель» излучения радара. В случае же пассивного ответа, цель, согласно принципу Гюйгенса-Френеля, представляет собой вторичный переизлучатель, мощность которого прямо пропорциональна падающему на него излучению радара. Таким образом, при пассивной радиолокации сигнал от передатчика радара по пути к цели ослабевает в 4πRt2{\displaystyle 4\pi R_{t}^{2}} раз, отражается, а затем по пути от цели до приемника радара ослабевает еще в 4πRr2{\displaystyle 4\pi R_{r}^{2}}. В результате получаем коэффициент (4π)2Rt2Rr2{\displaystyle {(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}, и в случае, когда Rt = Rr = R, этот коэффициент равен (4π)2R4{\displaystyle {(4\pi )}^{2}R^{4}}.

Эстафета переходит в Германию

В 1904 году немец Христиан Хюльсмейер запатентовал устройство под названием телемобилоскоп. Этот прибор предполагалось использовать в судоходстве для обнаружения кораблей в условиях плохой видимости. Телемобилескоп был построен на основе искрового генератора радиоволн и в своей последней версии мог находить суда на расстоянии до 3 км. Однако устройством не заинтересовались ни гражданские, ни военные, предпочитая по старинке пользоваться на судах паровыми ревунами. По сути прибор Хюльсмайера был еще не радаром, а радиодетектором. Существовавшие на тот момент технологии еще не позволяли построить полноценный радиолокатор.

Схема установки антенны радиолокатора «Зеетакт» на немецкой подводной лодке

В 1920-1930-е годы немецкие ученые и инженеры достигли больших успехов в развитии военной радиолокации. В 1935 году физик Рудольф Кунхольд из Института технологий связи германских ВМС представил радиолокационный прибор с электронно-лучевым дисплеем. К концу 1930-х на его основе были созданы оперативные радиолокаторы «Зеетакт» для флота и «Фрейя» для ПВО.

Однако, несмотря на значительные научные результаты, руководство Третьего рейха рассчитывало на блицкриг и не спешило развивать национальную сеть радаров, считая их преимущественно оборонительными средствами. К 1940 году Германия располагала лишь небольшой сетью станций дальнего обнаружения. И только к концу 1943 года территорию Германии полностью накрыли защитным радиолокационным «колпаком».  

Случайные

Принимаемая мощность

Мощность принимаемого отклика радиосигнала задаётся уравнением:

Pr=PtGtArσF4(4π)2Rt2Rr2=Pt⋅Gt4πRt2⋅F2⋅σ⋅F2⋅Ar4πRr2{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}}=P_{t}\cdot {{G_{t}} \over {4\pi R_{t}^{2}}}\cdot F^{2}\cdot {\sigma }\cdot F^{2}\cdot {{A_{r}} \over {4\pi R_{r}^{2}}}}

Обозначения:

  • Pr — мощность сигнала приёмной антенны;
  • Pt — мощность радиопередатчика;
  • Gt — коэффициент усиления передающей антенны;
  • Ar (иногда S) — эффективная площадь (апертура) приемной антенны, Ar = Gr*λ²/4π, где Gr — коэффициент усиления приемной антенны, λ — длина волны.
  • σ — эффективная площадь рассеяния цели в данном ракурсе;
  • F — коэффициент потерь при распространении сигнала;
  • Rt — расстояние от передающей антенны до цели;
  • Rr — расстояние от цели до приёмной антенны.

В случае, когда передающая и приёмная антенны располагаются на одинаковом расстоянии от цели, то есть во всех моностатических РЛС (Однопозиционных радиолокационных системах, ОПРЛС) и иногда, в других типах, формула упрощается за счет Rt = Rr = R, что приводит к коэффициенту R4:

Pr=PtGtArσF4(4π)2R4.{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R^{4}}}.}

Таким образом, принимаемая мощность уменьшается пропорционально 4-й степени расстояния.

Коэффициент F можно принять равным 1, если считать, что волна распространяется в вакууме без потерь и без интерференции.

Раздел: Вторичная радиолокация

Рисунок 1. Предварительный просмотр интернет-представительства

Рисунок 2. Антенна широкой вертикальной апертуры

Рисунок 1. Антенна широкой вертикальной апертуры

Радиолокация зародилась в ответ на потребности, вызванные войной.
Необходимость обнаружения самолетов противника на больших расстояниях привела к огромным интеллектуальным и финансовым вложениям в развитие радиолокации
(англ. RADAR – акроним от RAdio Detection And Ranging).
Классическую радиолокационную технологию называют активной радиолокацией с пассивным ответом.
Это означает, что такая технология не предполагает какого-либо активного ответа со стороны обнаруживаемого воздушного объекта
на запрос (зондирующий сигнал) радиолокатора.
Зачем же понадобилась другая технология?

По мере разработки и применения радиолокаторов, вскоре стало ясно, что, помимо наблюдения за самолетами противника,
радиолокатор является хорошим средством для наблюдения и за своими («дружественными») воздушными объектами.
Следовательно, радиолокаторы могут применяться для контроля за последними и для управления ими.
Если «дружественный» самолет оснащен радиолокационным ответчиком, или транспондером
(transponder = transmitting responder),
то, приняв запросный сигнал радиолокатора, он посылает в ответ мощный сигнал в качестве эхо-сигнала.
Такой ответный сигнал генерируется транспондером и является кодированным.
Полученная таким образом новая возможность оказалась очень полезной для военных пользователей,
поскольку теперь можно было четко отличить свой самолет (отвечает на запрос) от самолета противника (не отвечает на запрос).
Кроме этого, в ответе может содержаться гораздо больше информации, чем может получить классический радиолокатор,
называемый еще первичным радиолокатором. К дополнительной информации относится, например,
высота
самолета над уровнем моря, индивидуальный код,
признак возникновения каких-либо технических проблем на борту (потеря радиоконтакта и тому подобное).

Цель данного раздела состоит в том, чтобы дать общее представление о принципах функционирования радиолокационных систем с активным ответом,
называемых еще вторичными обзорными радиолокаторами (англ. Secondary Surveillance Radar, SSR).
Во-первых, будет рассмотрена функциональная схема вторичного радиолокатора (режим А/С), включая форматы канала связи и ответных сообщений.
Во-вторых, будут описаны основные аспекты перспективной системы (режим S).

Дальность действия РЛС

Основная статья: Основное уравнение радиолокации

Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, мощности излучаемого сигнала, и чувствительности приёмника системы.
В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:

Dmax=PnDaSaσ(4π)2Pn.min4{\displaystyle D_{max}={\sqrt{\frac {P_{n}D_{a}S_{a}\sigma }{\left(4\pi \right)^{2}P_{n.min}}}}},

где:

Pn{\displaystyle \;P_{n}} — мощность генератора;
Da{\displaystyle \;D_{a}} — коэффициент направленного действия антенны;
Sa{\displaystyle \;S_{a}} — эффективная площадь антенны;
σ{\displaystyle \;\sigma } — эффективная площадь рассеяния цели;
Pn.min{\displaystyle \;P_{n.min}} — минимальная чувствительность приёмника.

При наличии шумов и помех дальность действия РЛС уменьшается.

Влияние помех

Работа нескольких РЛС в одном частотном диапазоне

На загруженных участках, где одновременно используются многочисленные РЛС (например, морские порты) вероятны совпадения частотных диапазонов. Это приводит к приему РЛС сигнала другой РЛС. В результате на экране появляются дополнительные точки, бросающиеся в глаза из-за своей геометрической правильности. Эффект может быть убран переходом на другую рабочую частоту.

Мнимое изображение

При отражении радиосигнала от массивного объекта возможно дальнейшее распространение к меньшим объектам с последующим отражением и попаданием в РЛС. Таким образом, путь, который прошел сигнал становится больше и на экране появляется мнимое изображение объекта, который на самом деле находится в другом месте

Такой эффект должен приниматься во внимание при нахождении вблизи крупных отражающих объектов, таких как мосты, гидротехнические сооружения и крупные суда.

Многократное отражение

При размещении РЛС на большом судне возможен эффект многократного отражения сигнала. Сигнал РЛС отражается от близкого объекта, частично попадает обратно в РЛС, а частично отражается от корпуса суда. Таких отражений может быть много, амплитуда при каждом отражении уменьшается и сигнал будет восприниматься до тех пор, пока не будет достигнута пороговая чувствительность приемника. На экране радара будут видны несколько уменьшающихся с каждым разом объектов. Расстояние между ними пропорционально расстоянию от РЛС до объекта.

Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды.
Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.

ЗиС-150: история создания – начало

История «полтораста» началась еще в 1937 году, когда под руководством Е.И. Важинского появился проект автомобиля ЗиС-15 – нового грузовика, которым планировалось уже тогда заменить устаревающий ЗиС-5.

ЗиС-15 был гораздо мощнее своего предшественника. Грузоподъемность машины составляла 5 тонн, кабина стала трехместной и приобрела более совершенные, для своего времени, обтекаемые формы. Но к 1939 году, уже без Важинского, который был репрессирован в 1938-ом, автомобиль получил ряд доработок. В новом варианте КПП стала пятиступенчатой, на 1 тонну снижена грузоподъемность, а также внесены изменения во внешний облик машины. В таком виде, в 1940 году, грузовик представили на выставке народного хозяйства (позже переименованным в ВДНХ) в Москве, после которой автомобиль начали готовить к массовому производству. Причем ЗиС-15 должен был стать базовой моделью еще для целого ряда машин: трехтонника ЗиС-23, внедорожника ЗиС-24, двух газогенераторных – ЗиС-25 и ЗиС-28, седельного тягача ЗиС-26, а также автобуса с вагонной компоновкой ЗиС-17. Но планам не суждено было осуществиться – пришел 1941 год, а вместе с ним война. Работа над новой машиной остановилась.

Принимаемая мощность

Мощность принимаемого отклика радиосигнала задаётся уравнением:

Pr=PtGtArσF4(4π)2Rt2Rr2=Pt⋅Gt4πRt2⋅F2⋅σ⋅F2⋅Ar4πRr2{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}}=P_{t}\cdot {{G_{t}} \over {4\pi R_{t}^{2}}}\cdot F^{2}\cdot {\sigma }\cdot F^{2}\cdot {{A_{r}} \over {4\pi R_{r}^{2}}}}

Обозначения:

  • Pr — мощность сигнала приёмной антенны;
  • Pt — мощность радиопередатчика;
  • Gt — коэффициент усиления передающей антенны;
  • Ar (иногда S) — эффективная площадь (апертура) приемной антенны, Ar = Gr*λ²/4π, где Gr — коэффициент усиления приемной антенны, λ — длина волны.
  • σ — эффективная площадь рассеяния цели в данном ракурсе;
  • F — коэффициент потерь при распространении сигнала;
  • Rt — расстояние от передающей антенны до цели;
  • Rr — расстояние от цели до приёмной антенны.

В случае, когда передающая и приёмная антенны располагаются на одинаковом расстоянии от цели, то есть во всех моностатических РЛС (Однопозиционных радиолокационных системах, ОПРЛС) и иногда, в других типах, формула упрощается за счет Rt = Rr = R, что приводит к коэффициенту R4:

Pr=PtGtArσF4(4π)2R4.{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R^{4}}}.}

Таким образом, принимаемая мощность уменьшается пропорционально 4-й степени расстояния.

Коэффициент F можно принять равным 1, если считать, что волна распространяется в вакууме без потерь и без интерференции.

Принимаемая мощность[ | код]

Мощность принимаемого отклика радиосигнала задаётся уравнением:

Pr=PtGtArσF4(4π)2Rt2Rr2=Pt⋅Gt4πRt2⋅F2⋅σ⋅F2⋅Ar4πRr2{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}}=P_{t}\cdot {{G_{t}} \over {4\pi R_{t}^{2}}}\cdot F^{2}\cdot {\sigma }\cdot F^{2}\cdot {{A_{r}} \over {4\pi R_{r}^{2}}}}

Обозначения:

  • Pr — мощность сигнала приёмной антенны;
  • Pt — мощность радиопередатчика;
  • Gt — коэффициент усиления передающей антенны;
  • Ar (иногда S) — эффективная площадь (апертура) приемной антенны, Ar = Gr*λ²/4π, где Gr — коэффициент усиления приемной антенны, λ — длина волны.
  • σ — эффективная площадь рассеяния цели в данном ракурсе;
  • F — коэффициент потерь при распространении сигнала;
  • Rt — расстояние от передающей антенны до цели;
  • Rr — расстояние от цели до приёмной антенны.

В случае, когда передающая и приёмная антенны располагаются на одинаковом расстоянии от цели, то есть во всех моностатических РЛС (Однопозиционных радиолокационных системах, ОПРЛС) и иногда, в других типах, формула упрощается за счет Rt = Rr = R, что приводит к коэффициенту R4:

Pr=PtGtArσF4(4π)2R4.{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R^{4}}}.}

Таким образом, принимаемая мощность уменьшается пропорционально 4-й степени расстояния.

Коэффициент F можно принять равным 1, если считать, что волна распространяется в вакууме без потерь и без интерференции.

Операторы

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

  • импульсные;
  • непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

https://youtube.com/watch?v=EzWo_k1MDuc

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

Литература

  • Поляков В. Т. Посвящение в радиоэлектронику. — М.: Радио и связь, 1988. — 352 с. — (МРБ. Выпуск 1123). — 900 000 экз. — ISBN 5-256-00077-2.
  • Леонов А. И. Радиолокация в противоракетной обороне. — М.: Воениздат, 1967. — 136 с. — (Радиолокационная техника).
  • Радиолокационные станции бокового обзора / Под редакцией А. П. Реутова. — М.: Советское радио, 1970. — 360 с. — 6700 экз.
  • Радиолокационные станции воздушной разведки / Под редакцией Г. С. Кондратенкова. — М.: Воениздат, 1983. — 152 с. — 18 000 экз. — ISBN 200001705124.
  • Мищенко Ю. А. Загоризонтная радиолокация. — М.: Воениздат, 1972. — 96 с. — (Радиолокационная техника).
  • Бартон Д. Радиолокационные системы / Сокращённый перевод с английского под редакцией К. Н. Трофимова. — М.: Воениздат, 1967. — 480 с.
  • Шембель Б. К. У истоков радиолокации в СССР. — М.: Советское радио, 1977. — 80 с.
  • Водопьянов Ф. А. . Радиолокация. — М., 1946.
  • Рыжов К. В. 100 великих изобретений. — М.: Вече, 2009. — 480 с. — (100 великих). — ISBN 5-7838-0528-9.
  • Bowen, Edward George. Radar Days. — CRC Press, 1998. — ISBN 9780750305860.
  • Центральная радиолаборатория в Ленинграде // Под ред. И. В. Бренёва. — М.: Советское радио, 1973.
  • Военно-исторический музей артиллерии, инженерных войск и войск связи. Коллекция документов генерал-лейтенанта М. М. Лобанова по истории развития радиолокационной техники. Ф. 52Р оп. № 13
  • Лобанов М. М. Из прошлого радиолокации: Краткий очерк. — М.: Воениздат, 1969. — 212 с. — 6500 экз.
  • Лобанов М. М. Мы —— военные инженеры. — М.: Воениздат, 1977. — 223 с.
  • Лобанов М. М. Глава седьмая. О Совете по радиолокации при Государственном комитете обороны // Начало советской радиолокации. — М.: Советское радио, 1975. — 288 с.

Радиолокация

Кроме телевидения и радиовещания, очень важное значение в нашей жизни имеет радиолокация. Радиолокация – это определение и обнаружение местоположения различных объектов при помощи радиоволн. Радиолокация широко распространена в радиосвязи

Радиолокация осуществляется при помощи прибора – радиолокатора (радара) (рис. 8)

Радиолокация широко распространена в радиосвязи. Радиолокация осуществляется при помощи прибора – радиолокатора (радара) (рис. 8).

Рис. 8. Радар (Источник)

В радарах антенны передающая и приемная соединены вместе, радиолокатор – это комбинация приемника и передающего устройства. Работает радиолокатор в импульсном режиме (рис. 9).

Рис. 9. Принцип работы радиолокатора (Источник)

Импульсный режим составляет одну миллионную секунды. Посылается сигнал – и радар автоматически переключается на прием этого сигнала, свойства работы радара основаны на том, что электромагнитная волна способна отражаться от поверхности. Вот этот отраженный сигнал радар и принимает в тот момент времени, когда он работает на прием. Расстояние до цели при помощи радара определяются по формуле, которую используют

при расчетах:

S = с · Δt / 2

В этой формуле представлено расстояние до цели (S), скорость электромагнитной волны (с) – величина постоянная и соответствует скорости в 300 000 км/с, время от момента подачи сигнала до момента приема сигнала, деленное пополам, так как сигнал идет до цели и обратно. Радиолокация используется не только на земле, но и в астрономии для обеспечения взаимосвязи между различными космическими телами и Землей. Определение расстояния до Луны было осуществлено с помощью радиолокатора. Был послан сигнал, получен отраженный сигнал, в результате чего уточнили расстояние от Земли до Луны.

Сегодня в астрономии радиолокация занимает свое особое место, радиоастрономия – это один из видов очень серьезных, быстроразвивающихся частей науки.

Дальность действия РЛС

Основная статья: Основное уравнение радиолокации

Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, мощности излучаемого сигнала, и чувствительности приёмника системы.
В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:

Dmax=PnDaSaσ(4π)2Pn.min4{\displaystyle D_{max}={\sqrt{\frac {P_{n}D_{a}S_{a}\sigma }{\left(4\pi \right)^{2}P_{n.min}}}}},

где:

Pn{\displaystyle \;P_{n}} — мощность генератора;
Da{\displaystyle \;D_{a}} — коэффициент направленного действия антенны;
Sa{\displaystyle \;S_{a}} — эффективная площадь антенны;
σ{\displaystyle \;\sigma } — эффективная площадь рассеяния цели;
Pn.min{\displaystyle \;P_{n.min}} — минимальная чувствительность приёмника.

При наличии шумов и помех дальность действия РЛС уменьшается.

Влияние помех

Работа нескольких РЛС в одном частотном диапазоне

На загруженных участках, где одновременно используются многочисленные РЛС (например, морские порты) вероятны совпадения частотных диапазонов. Это приводит к приему РЛС сигнала другой РЛС. В результате на экране появляются дополнительные точки, бросающиеся в глаза из-за своей геометрической правильности. Эффект может быть убран переходом на другую рабочую частоту.

Мнимое изображение

При отражении радиосигнала от массивного объекта возможно дальнейшее распространение к меньшим объектам с последующим отражением и попаданием в РЛС. Таким образом, путь, который прошел сигнал становится больше и на экране появляется мнимое изображение объекта, который на самом деле находится в другом месте

Такой эффект должен приниматься во внимание при нахождении вблизи крупных отражающих объектов, таких как мосты, гидротехнические сооружения и крупные суда.

Многократное отражение

При размещении РЛС на большом судне возможен эффект многократного отражения сигнала. Сигнал РЛС отражается от близкого объекта, частично попадает обратно в РЛС, а частично отражается от корпуса суда. Таких отражений может быть много, амплитуда при каждом отражении уменьшается и сигнал будет восприниматься до тех пор, пока не будет достигнута пороговая чувствительность приемника. На экране радара будут видны несколько уменьшающихся с каждым разом объектов. Расстояние между ними пропорционально расстоянию от РЛС до объекта.

Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды.
Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.

Принимаемая мощность

Мощность принимаемого отклика радиосигнала задаётся уравнением:

Pr=PtGtArσF4(4π)2Rt2Rr2=Pt⋅Gt4πRt2⋅F2⋅σ⋅F2⋅Ar4πRr2{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}}=P_{t}\cdot {{G_{t}} \over {4\pi R_{t}^{2}}}\cdot F^{2}\cdot {\sigma }\cdot F^{2}\cdot {{A_{r}} \over {4\pi R_{r}^{2}}}}

Обозначения:

  • Pr — мощность сигнала приёмной антенны;
  • Pt — мощность радиопередатчика;
  • Gt — коэффициент усиления передающей антенны;
  • Ar (иногда S) — эффективная площадь (апертура) приемной антенны, Ar = Gr*λ²/4π, где Gr — коэффициент усиления приемной антенны, λ — длина волны.
  • σ — эффективная площадь рассеяния цели в данном ракурсе;
  • F — коэффициент потерь при распространении сигнала;
  • Rt — расстояние от передающей антенны до цели;
  • Rr — расстояние от цели до приёмной антенны.

В случае, когда передающая и приёмная антенны располагаются на одинаковом расстоянии от цели, то есть во всех моностатических РЛС (Однопозиционных радиолокационных системах, ОПРЛС) и иногда, в других типах, формула упрощается за счет Rt = Rr = R, что приводит к коэффициенту R4:

Pr=PtGtArσF4(4π)2R4.{\displaystyle P_{r}={{P_{t}G_{t}A_{r}\sigma F^{4}} \over {{(4\pi )}^{2}R^{4}}}.}

Таким образом, принимаемая мощность уменьшается пропорционально 4-й степени расстояния.

Коэффициент F можно принять равным 1, если считать, что волна распространяется в вакууме без потерь и без интерференции.

См. также

Двигатель — агрегат, приводящий автомобиль в движение

Дальность действия радиолокатора с активным ответом

Активный ответ приходит от радиолокационного ответчика (ретранслятора), установленного на цели.

Максимальная дальность действия по каналу запроса

Dreq.max=PreqGreqAr4πPr.min{\displaystyle D_{req.max}={\sqrt {{P_{req}G_{req}A_{r}} \over {4\pi P_{r.min}}}}}

Максимальная дальность действия по каналу ответа

Dresp.max=PrespGrespAr4πPr.min{\displaystyle D_{resp.max}={\sqrt {{P_{resp}G_{resp}A_{r}} \over {4\pi P_{r.min}}}}}

При работе с активным ответом, расстояние входит в формулы со степенью 2, а не 4, так как мощность ответчика является фиксированной и не зависит от мощности падающего на «цель» излучения радара. В случае же пассивного ответа, цель, согласно принципу Гюйгенса-Френеля, представляет собой вторичный переизлучатель, мощность которого прямо пропорциональна падающему на него излучению радара. Таким образом, при пассивной радиолокации сигнал от передатчика радара по пути к цели ослабевает в 4πRt2{\displaystyle 4\pi R_{t}^{2}} раз, отражается, а затем по пути от цели до приемника радара ослабевает еще в 4πRr2{\displaystyle 4\pi R_{r}^{2}}. В результате получаем коэффициент (4π)2Rt2Rr2{\displaystyle {(4\pi )}^{2}R_{t}^{2}R_{r}^{2}}, и в случае, когда Rt = Rr = R, этот коэффициент равен (4π)2R4{\displaystyle {(4\pi )}^{2}R^{4}}.

Российский внедорожник ГАЗ-3106

Классификация

Выделяют два вида радиолокации:

  • Пассивная радиолокация основана на приёме собственного излучения объекта;
  • При активной радиолокации радар излучает свой собственный зондирующий сигнал и принимает его отражённым от цели. В зависимости от параметров принятого сигнала определяются характеристики цели.

Активная радиолокация бывает двух видов:

Активная радиолокация с пассивным ответом

  • С активным ответом — на объекте предполагается наличие радиопередатчика (ответчика), который излучает радиоволны в ответ на принятый сигнал. Активный ответ применяется для опознавания объектов (свой-чужой), дистанционного управления, а также для получения от них дополнительной информации (например, количество топлива, тип объекта и т. д.);
  • С пассивным ответом — запросный сигнал отражается от объекта и воспринимается в пункте приёма как ответный.

Для просмотра окружающего пространства РЛС использует различные способы обзора за счёт перемещения направленного луча антенны РЛС:

  • круговой;
  • секторный;
  • обзор по винтовой линии;
  • конический;
  • по спирали;
  • «V» обзор;
  • линейный (самолёты ДРЛО типа Ан-71 и А-50 (Россия) или американские с системой Авакс).

В соответствии с видом излучения РЛС делятся на:

  • РЛС непрерывного излучения;
  • Импульсные РЛС.

ВЫВОДЫ

Дальность действия РЛС тем больше, чем больше мощность излучения Ри, коэффициент усиления G и эффективная площадь антенны Sa, эффективная отражающая поверхность цели σ и чем меньше абсолютная величина чувствительности приемника Рпр.min.

Наибольший эффект для увеличения Дmaxдает увеличение геометрических размеров антенны G и Sa, где для увеличения Дmax в два раза достаточно увеличить площадь антенны в 4 раза. Но геометрические размеры ограничиваются конструктивными особенностями антенных устройств. Наименьший эффект для увеличения Дmaxдает увеличение Ри ,σ, Рпр.min , так как для увеличения Дmax в два раза их надо увеличивать в 16 раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector