Килограмм тротила → тонна (американская) тротила , тротиловый эквивалент энергии
Содержание:
- Содержание
- Угольный эквивалент энергии, условное топливо
- В словаре Синонимы 4
- Примеры
- Общая характеристика задач оценки
- Самолет Ан-2 «Кукурузник»: характеристики, фото, видео
- Тротиловый эквивалент — TNT equivalent
- Определение мощности взрыва
- Особенности использования
- Угольный эквивалент энергии, условное топливо
- Новая ситуация в мире после Второй мировой войны. Распад антигитлеровской коалиции
- Значения других единиц, равные введённым выше
- Пример 5
- Пример 2
- Шрапнель в Энциклопедическом словаре:
- Оценка параметров ударной волны при взрыве газовоздушных смесей
- Удаление насекомых с лобового стекла автомобиля
- Как хранить сушеную морковь
- Мощность ядерного взрыва
- Оценка степени повреждения отдельно стоящих зданий
- Маленький шаг для человека
- 6. «Венера»
- 7. «Викинг»
- 8. «Вояджер»
- 9. «Спейс шаттл»
- 10. «Мир»
- 11. «Хаббл»
- 12. «Соджорнер»
- 13. МКС (1998)
- 14. «Новые рубежи»
- 15. Планы по колонизации Марса от Илона Маска
Содержание
Угольный эквивалент энергии, условное топливо
В словаре Синонимы 4
Примеры
Мегатонны тротила | Энергия | Описание |
---|---|---|
1 × 10 −12 | 1,162 Вт · ч | ≈ 1 калория пищи (большая калория, ккал), которая представляет собой приблизительное количество энергии, необходимое для повышения температуры одного килограмма воды на один градус Цельсия при давлении в одну атмосферу . |
1 × 10 −9 | 1,162 кВтч | В контролируемых условиях один килограмм тротила может разрушить (или даже уничтожить) небольшой автомобиль. |
1 × 10 −8 | 11,62 кВтч | Приблизительная лучистая тепловая энергия, выделяемая во время трехфазного дугового замыкания , 600 В, 100 кА, в отсеке размером 0,5 м × 0,5 м × 0,5 м (20 дюймов × 20 дюймов × 20 дюймов) за период в 1 секунду. |
1,2 × 10 −8 | 13,94 кВтч | 12 кг тротила, использованного при взрыве коптской церкви в Каире , Египет, 11 декабря 2016 г., в результате которого погибли 25 человек. |
(1–44) × 10 −6 | 1,16–51,14 МВтч | Мощность обычных бомб составляет от менее одной тонны до 44 тонн FOAB . Мощность крылатой ракеты «Томагавк» эквивалентна 500 кг в тротиловом эквиваленте, или примерно 0,5 тонны. |
1,9 × 10 −6 | 2,90 МВтч | В телешоу « Разрушители мифов» использовали 2,5 тонны ANFO для изготовления «самодельных» алмазов. |
5 × 10 −4 | 581 МВтч | Реальный заряд 0,5 килотонны в тротиловом эквиваленте (2,1 ТДж) в операции «Матросская шляпа» . Если бы заряд был полной сферой, это было бы 1 килотонна тротила (4,2 ТДж). |
Общая характеристика задач оценки
Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:
вид и количество взрывчатого вещества (ВВ);
условия взрыва;
расстояние от места взрыва до места оценки его последствий;
параметры ударной волны;
степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.
Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.
Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов
Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования
Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.
Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).
Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.
Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.
Расчетные соотношения, используемые при решении задач.
Тротиловый эквивалент массы ВВ.
Количество взрывчатого вещества или его массу МBB при проведении расчетов выражают через тротиловый эквивалент МТ. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:
Самолет Ан-2 «Кукурузник»: характеристики, фото, видео
Тротиловый эквивалент — TNT equivalent
Тротиловый эквивалент — это условное обозначение энергии, обычно используемое для описания энергии, выделяющейся при взрыве. Тонна тротила является единицей энергии определяется этой конвенцией быть 4,184 гигаджоулей , что приблизительно соответствует энергии, выделяемой при взрыве метрической тонны (1000 кг) тротила . Другими словами, на каждый грамм взорванного тротила Выделяется 4184 джоуля (или одна большая калория = 1000 калорий ) энергии.
Это соглашение предназначено для сравнения разрушительной силы события с разрушительностью традиционных взрывчатых материалов , типичным примером которых является тротил, хотя другие обычные взрывчатые вещества, такие как динамит, содержат больше энергии.
Определение мощности взрыва
Определение мощности взрыва
Определение мощности взрыва полного тротилового эквивалента (ПТЭ) при испытаниях являлось одной из главных задач. Основным способом экспериментального определения ПТЭ взрыва при атмосферных испытаниях был принят метод, основанный на регистрации развития светящейся области в течение ее первой фазы, — метод «огненного шара» (ОШ). Этот метод, обладавший высокой точностью, имел основное применение в наземных измерительных комплексах полигонов. Наши испытатели совместно с представителями ОКБ-156 МАП и ИХФ АН СССР внедрили метод ОШ в систему самолетных измерений путем установки на самолет-носитель Ту-16 камеры СК-ЗМ, применяемой в комплексе наземных измерений. Однако работу до практического применения довести не удалось из-за их особенностей конструктивного исполнения. Для метода ОШ требовалась разработка, изготовление и внедрение на самолет специальной дальномерной системы, фиксирующей расстояние от камеры до точки взрыва. Вместе с тем наземные измерения мощности взрыва методом ОШ позволили оценить и внедрить в систему самолетных измерений приборы, основанные на использовании других принципов.
Были также проведены работы по использованию доработанных штатных самолетных аэрофотоаппаратов (АФА) для измерений мощности по методу ОШ. Доработанные АФА давали возможность фиксировать на неподвижную фотопленку через вращающийся обтюратор развитие ОШ в первой фазе свечения. Вмонтированный в АФА фотоэлемент обеспечивал регистрацию моментов экспонирования. При этом имелась возможность в одном полете неоднократно проводить измерения с предварительной частичной перемоткой пленки АФА перед очередным взрывом. АФА имели длиннофокусные объективы, что позволяло получать изображения ОШ более четко и больших размеров, чем это было возможно на СК-ЗМ. Идея внедрения этих средств сулила в сочетании с дальномерными системами хорошую перспективу. Однако задержки в разработке специальных дальномерных систем на этом этапе не позволили использовать эти методические проработки с должным эффектом.
Работы по внедрению метода ОШ послужили основой для формирования требований на разработку специальных самолетов-лабораторий.
Другой метод определения мощности взрыва был основан на регистрации длительности первой фазы свечения ОШ — метод «минимума». Этот метод является эмпирическим, основанным на обработке результатов совместных измерений по методу «огненного шара» и измерений длительностей первой фазы свечения взрыва.
В системе самолетных измерений метод «минимума» являлся основным, как обладающий приемлемой точностью определения мощности, а также простотой применения на самолетах — сравнительно легко обеспечивалось размещение на каждом самолете до шести (иногда до десяти) фотоприемников с регистрацией их сигналов на шлейфовых осциллографах
При этом имелась возможность неоднократно измерять в одном из полетов без перезарядки аппаратуры, что было немаловажно для многих этапов испытаний
Наряду с измерениями мощности ядерного взрыва в системе самолетных комплексов применялась аппаратура измерения параметров ударной волны и светового излучения взрыва как для уточнения закономерностей их распространения в атмосфере, так и для изучения ответной реакции элементов конструкции самолетов на воздействие взрывов по условиям прочности, устойчивости, управляемости и пожаростойкости.
http://dic.academic.ru/dic.nsf/emergency/1429/%D0%9C%D0%BE%D1%89%D0%BD%D0%BE%D1%81%D1%82%D1%8C
http://m.sportwiki.to/%D0%92%D0%B7%D1%80%D1%8B%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D0%BB%D0%B0
http://document.wikireading.ru/70322
Особенности использования
Тротил является взрывчатым веществом с большой мощностью, и имеет множество достоинств, которые выделяют его от других веществ. Тротил может находиться в нескольких формах:
- гранулированная;
- прессованная;
- литая.
Все это позволяет использовать его не только в военном деле, но и в промышленности, например, в горной. Также тротил обладает высоким уровнем безопасности на всех этапах использования и большим сроком хранения без потери всех взрывчатых свойств, который составляет до 20 лет.
Применение тротила в подрыве боеприпасов
Часто используют тротил в соединениях с другими взрывчатыми веществами, что позволяет улучшить качество, снизить чувствительность и добиться постоянного состояния других веществ.
Основное применение тротила:
- военное дело;
- промышленность;
- медицина.
Ранее тротил активно применялся в медицине, и он входил в состав некоторых медицинских препаратов. Сейчас он входит в состав антигрибковых средств. Также ученые всего мира продолжают работы по созданию взрывчатого вещества, превосходящего мощность, стабильность и другие свойства тротила.
Угольный эквивалент энергии, условное топливо
Новая ситуация в мире после Второй мировой войны. Распад антигитлеровской коалиции
Значения других единиц, равные введённым выше
Пример 5
Определить по таблице степень разрушения кирпичного здания при взрыве на расстоянии 10м от него на грунте заряда гексогена массой 10 кг.
1. Определение тротилового эквивалента:
2. Определение R
3. Определение ΔPФ:
4. Увеличивая табличные значения давлний или уменьшая рассчитанное значение ΔPФ в 1.5 раза по таблице 5 определяем, что здание получит средние разрушения.
По диаграмме разрушений
Более точная оценка может быть получена на основе использования диаграмм, в которых результат воздействия ударной волны зависит от давления и импульса. Каждому конкретному объекту соответствует своя диаграмма степени разрушений, типичная форма которой приведена на рисунке 1.
Как следует из диаграммы, лишь небольшая зона А характеризуется зависимостью степени разрушений как от давления, так и от импульса. Остальная часть плоскости соответствует прямым ΔP=const (зона В), где влияние импульса мало, и прямым I=const (зона С), где не ощущается влияния давления.
Недостаток такого подхода к оценке степени разрушения зданий состоит в том, что составление диаграммы для конкретного объекта представляет собой достаточно сложную задачу.
Пример 2
Определить с помощью расчета по формулам избыточное давление и удельный импульс во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 10 т. пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.
1. Определение массы пропана в составе ГВС
2. Определение тротилового эквивалента
3. Определение приведенного радиуса взрыва
4. Определение избыточного давления во фронте ударной волны
откуда
следовательно
5. Определение значения удельного импульса ударной волны
откуда
Приближенная оценка параметров взрывной волны за пределами облака может быть проведена по таблице 4, в которой представлены значения избыточного давления ΔPФ и эффективного времени действия фазы сжатия θ, заранее рассчитанные для различных значений R/r. Значения параметров, указанных в таблице, получены исходя из давления внутри газового облака 1700 кПа.
Шрапнель в Энциклопедическом словаре:
Оценка параметров ударной волны при взрыве газовоздушных смесей
Параметры ударной волны на расстояниях R < ro
При взрывах газовоздушных смесей параметры внутри газового облака могут изменяться в очень широких пределах в зависимости от условий взрыва, концентрации горючей компоненты и характера взрывного горения, которые при прогнозировании взрывов, особенно на открытом воздухе, учесть практически невозможно. Поэтому обычно расчеты проводят для худшего случая, при котором разрушительные последствия взрыва наибольшие.
Таким наихудшим случаем является детонационное горение смеси стехиометрического состава. Скорость распространения процесса детонационного горения внутри облака очень велика и превышает скорость звука. Давление внутри облака за время взрыва вообще говоря не постоянно. Однако для проведения приближенной оценки параметров взрыва можно условно принять, что облако имеет форму полусферы с центром на поверхности земли, взрыв ГВС происходит мгновенно и давление в процессе взрыва одинаково и постоянно во всех точках, находящихся внутри облака.
Для большинства углеродоводородосодержащих газовых смесей стехиометрического состава можно принять, что давление внутри газового облака составляет 1700 кПа. Для проведения более точных расчетов в технической литературе приводятся расчетные соотношения, позволяющие рассчитать скорость детонационного горения, время полной детонации облака, давление в детонационной волне и др.
Параметры ударной волны на расстояниях R > ro
Формулы для определения значений параметров ударной волны на расстояниях, превышающих радиус полусферы газового облака в окружающем воздухе, получены путем аппроксимации численного решения задачи о детонации пропановоздушной смеси, выполненной Б. Е. Гельфандом. Решение получено интегрированием системы нестационарных уравнений газовой динамики в сферических координатах в переменных Лагранжа и позволяет получать результаты удовлетворительно согласующиеся с экспериментальными данными для горючих смесей различных углеводородов с воздухом.
Максимальное избыточное давление во фронте ударной волны (кПа):
Удаление насекомых с лобового стекла автомобиля
Как хранить сушеную морковь
После сушки морковь следует выдержать пару суток в одной общей емкости, чтобы влага, оставшаяся в продукте, равномерно распределилась.
После этого овощи перекладывают в герметичные стеклянные или жестяные емкости или хлопчатобумажные пакеты. Хранят морковь в таком виде в течение 1 года.
Сушеная морковь и ботва используется для приготовления первый и вторых блюд, а также для заваривания вкусного и полезного чая. Чай можно заваривать как из сушеной ботвы, так и из корнеплода.
Мощность ядерного взрыва
EdwART. Словарь терминов МЧС , 2010
Смотреть что такое «Мощность ядерного взрыва» в других словарях:
Мощность ядерного взрыва — количественная характеристика энергии взрыва ядерного боеприпаса, обычно выражаемая тротиловым эквивалентом. В мощность ядерного взрыва входит энергия, определяющая развитие механических и тепловых эффектов взрыва, и энергия мгновенного… … Гражданская защита. Понятийно-терминологический словарь
Мощность ядерного боеприпаса — количественная характеристика энергии взрыва ядерного боеприпаса. Обычно выражается тротиловым эквивалентом (массой тротила, энергия взрыва которой равна энергии взрыва данного ядерного боеприпаса) в тоннах, кплотоннах и мегатоннах … Словарь военных терминов
Эпицентр ядерного взрыва — У этого термина существуют и другие значения, см. Эпицентр (значения). Ядерное оружие … Википедия
Поражающие факторы ядерного взрыва — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Мощность взрыва — характеристика разрушительного действия боеприпасов, в которых эффект поражения обеспечивается подрывом заряда взрывчатого вещества. Для морских боеприпасов определяется размерами пробоин, создаваемых в днище или борту корабля, в результате… … Морской словарь
История ядерного оружия — Ядерное оружие … Википедия
Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива (англ. … Википедия
Испытания ядерного оружия — проверка характеристик ядерного боеприпаса (мощность, эффективность поражающих факторов) посредством ядерного взрыва. Попутно отрабатываются средства и способы защиты от ядерного оружия. Места нахождения основных полигонов для И.я.о.:… … Словарь черезвычайных ситуаций
Первое испытание ядерного оружия в Китае — 16 октября 1964 года Китай провел первое испытание ядерного оружия. Взрыв атомной бомбы был осуществлен на полигоне возле озера Лобнор, на северо западе страны, в Синцзянь Уйгурском автономном районе. В тот же день правительство Китая заявило,… … Энциклопедия ньюсмейкеров
Оценка степени повреждения отдельно стоящих зданий
Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.
Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.
Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.
По допустимому давлению при взрыве
Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.
Маленький шаг для человека
24 июля 1969 года два члена экипажа «Аполлон-11» ступили на поверхность Луны: Нил Армстронг и Базз Олдрин совершили один выход и пробыли на спутнике Земли два с половиной часа. Всего с 1969 по 1972 год по программе «Аполлон» было выполнено 6 полётов с посадкой на Луне. За эти годы на спутнике побывало 12 человек.
6. «Венера»
Ещё одна советская программа, но уже по изучению Венеры; снова множество важнейших достижений и открытий. Советские аппараты выяснили, что у ближайшей соседки невероятно высокое давление и она никакой не близнец Земли. В 1970 году «Венера-7» совершила первую в истории мягкую посадку, а пять лет спустя «Венера-9» передала первые фотографии с поверхности. Неофициально Венеру считали «советской» планетой, так как Союз прикладывал огромные усилия для её изучения, оставив Марс конкурентам.
7. «Викинг»
В 1975 году два одинаковых аппарата «Викинг-1» и «Викинг-2» были отправлены к Марсу с целью найти следы жизни в грунте. Жизнь найти не удалось, но была совершена мягкая посадка, были получены первые образцы грунта и первые панорамные цветные фото с поверхности. Аппараты должны были проработать 90 суток, но значительно превысили этот срок. «Викинг-1», например, оставался функциональным 5 лет.
8. «Вояджер»
«Вояджер» (или «Путешественник») — проект NASA по исследованию дальних планет Солнечной системы — Юпитера, Сатурна, Нептуна, Урана и Плутона (который тогда ещё считался планетой), а также их спутников. «Вояджер-1» и «Вояджер-2» были запущены в 1977 году. Они впервые передали детальные цветные снимки дальних планет и в первый раз сфотографировали крупнейшие спутники. Кроме этого, «Вояджер-1» стал первым искусственным объектом, покинувшим пределы Солнечной системы. На борту он несёт послание внеземным цивилизациям.
9. «Спейс шаттл»
Программа NASA «Космическая транспортная система» стала новым и смелым шагом к пилотируемой космонавтике. Всего было создано 5 космических челноков: «Индевор», «Атлантис», «Дискавери», «Челленджер» и «Колумбия». Два последних погибли вместе с экипажем, а всего с 1981 по 2011 «Спейс шаттлы» совершили 135 полётов.
10. «Мир»
В 1986 году Советский Союз вывел на околоземную орбиту базовый блок станции «Мир». Сама станция, без преувеличения, стала символом эпохи. Более 12 лет станция «Мир» имела постоянное «население»: Валерий Поляков пробыл на «Мире» 437 суток — и это рекорд пребывания человека в космосе. Было проведено 23 000 экспериментов и получено огромное количество данных о межпланетном пространстве.
11. «Хаббл»
Телескоп «Хаббл», выведенный на орбиту в 1990 году, стал «глазами» человечества. Орбитальный телескоп смог заглянуть так далеко, как никто прежде, и показать такие красоты Вселенной, каких и представить себе никто не мог. Удивительная история: если бы «Хаббл» продавался в супермаркете, то шёл бы по скидке как уценённый товар. Его зеркало, несмотря на то что являлось самым точно выверенным и дорогим в истории, имело дефект. Не удавалось достичь заданной резкости, хотя качество снимков всё равно было лучше, чем у любых наземных телескопов. Дефект был устранён в 1993, ремонт проходил в открытом космосе и длился 10 дней.
12. «Соджорнер»
Первый марсоход, успешно доставленный на Красную планету. «Соджорнер» дословно означает «временный житель» или «проезжий». Планировалось, что марсоход проработает на поверхности 7 сол (сол — марсианские сутки — 24 часа и 40 минут), но он работал в течение 83 сол до того момента, как спускаемая станция, действовавшая в качестве ретранслятора, не вышла из строя. После этого контакт с «Соджорнером» был потерям, его местонахождение сейчас неизвестно.
13. МКС (1998)
Международная космическая станция пришла на замену «Миру» в 1998 году. МКС почти в 5 раз больше предшественника и служит космической «дачей» для человечества по сей день. Всего в проекте МКС участвует 14 стран, хотя наибольшую нагрузку несут, конечно, США и Россия.
14. «Новые рубежи»
Автоматическая межпланетная станция «Новые горизонты» в рамках программы NASA «Новые рубежи» была запущена в 2006 году. Её цель — изучение Плутона и других объектов пояса Койпера. Пояс Койпера — это область Солнечной системы, похожая на пояс астероидов между Марсом и Юпитером, только этот пояс находится на дальних границах Солнечной системы и состоит из карликовых планет вроде Плутона. Кроме этого, аппарат «Новые горизонты» стал самым быстрым в истории.
15. Планы по колонизации Марса от Илона Маска
SpaceX — частная компания, основанная Илоном Маском с амбициозной целью ни много ни мало колонизировать Марс. Самым важным достижением на данный момент является не возвращение и посадка первой ступени Falcon и не запуск автомобиля в сторону Марса, а возобновление интереса к космосу в широких массах. Маск вместе со SpaceX вернул человечеству великую мечту.